0

The Sticky Synapse

Cell Adhesion Molecules and Their Role in Synapse Formation and Maintenance

Erschienen am 08.07.2009, 1. Auflage 2009
246,09 €
(inkl. MwSt.)

Lieferbar innerhalb 1 - 2 Wochen

In den Warenkorb
Bibliografische Daten
ISBN/EAN: 9780387927077
Sprache: Englisch
Umfang: xii, 453 S.
Einband: gebundenes Buch

Beschreibung

The molecular mechanisms, which are responsible for the functional differences between the various types of neuronal synapses, have become one of the central themes of modern neurobiology. It is becoming increasingly clear that a misregulation of synaptogenesis and synaptic remodeling and dysfunctional neuronal synapses are at the heart of several human diseases, both neurological disorders and psychiatric conditions. As synapses present specialized cellular junctions between neurons and their target cells, it may not come as a surprise that neural cell adhesion molecules (CAMs) are of special importance for the genesis and the maintenance of synaptic connections. Genes encoding adhesive molecules make up a significant portion of the human genome, and neural CAMs even have been postulated to be a major factor in the evolution of the human brain. These are just some of the many reasons why we thought a book on neural CAMs and their role in establishing and maintaining neuronal synapses would be highly appropriate for summarizing our current state of knowledge. Without question, over the near future, additional adhesive proteins will join the ranks of synaptic CAMs and our knowledge, and how these molecules enable neurons and their targets to communicate effectively will grow.

Produktsicherheitsverordnung

Hersteller:
Springer Verlag GmbH
juergen.hartmann@springer.com
Tiergartenstr. 17
DE 69121 Heidelberg

Autorenportrait

InhaltsangabeA Short History of the Synapse - Golgi Versus Ramón y Cajal.- Cell Adhesion Molecules at the Drosophila Neuromuscular Junction.- Development of the Vertebrate Neuromuscular Junction.- Synapse Formation in the Mammalian Central Nervous System.- Developmental Axonal Pruning and Synaptic Plasticity.- Cell Adhesion Molecules in Synaptopathies.- The Cadherin Superfamily in Synapse Formation and Function.- Nectins and Nectin-Like Molecules in the Nervous System.- The Down Syndrome Cell Adhesion Molecule.- Molecular Basis of Lamina-Specific Synaptic Connections in the Retina: Sidekick Immunoglobulin Superfamily Molecules.- SYG/Nephrin/IrreC Family of Adhesion Proteins Mediate Asymmetric Cell-Cell Adhesion in Development.- L1-Type Cell Adhesion Molecules: Distinct Roles in Synaptic Targeting, Organization, and Function.- Cell Adhesion Molecules of the NCAM Family and Their Roles at Synapses.- MHC Class I Function at the Neuronal Synapse.- Pathfinding Molecules Branch Out: Semaphorin Family Members Regulate Synapse Development.- Ephrins and Eph Receptor Tyrosine Kinases in Synapse Formation.- Neurexins and Neuroligins: A Synaptic Code for Neuronal Wiring That Is Implicated in Autism.- Synaptic Adhesion-Like Molecules (SALMs).- The Role of Integrins at Synapses.- Extracellular Matrix Molecules in Neuromuscular Junctions and Central Nervous System Synapses.- Gap Junctions as Electrical Synapses.

Inhalt

Neuromuscular Junctions.- CNS Synapse Formation.- Plasticity and Pruning of Synapsed and Cell Contacts.- Synapses, CAMs and Human Disorders.- Classical Cadherins and Protocadherins.- L1-type CAMs.- NCAM.- Sidekick.- DSCAM.- Nectins/SynCAM.- SYG-CAMs in C. Elegans.- Class I MHC.- Ephrins.- Integrins.- Neuroligins, Neurexins.- Extracellular Matrix Molecules such as Thrombospondin, Agrin, Laminin and Others.

Weitere Artikel aus der Kategorie "Medizin/Nichtklinische Fächer"

Alle Artikel anzeigen