0

Activity Learning

eBook - Discovering, Recognizing, and Predicting Human Behavior from Sensor Data, Wiley Series on Parallel and Distributed Computing

Erschienen am 06.02.2015, 1. Auflage 2015
99,99 €
(inkl. MwSt.)

Download

E-Book Download
Bibliografische Daten
ISBN/EAN: 9781119010234
Sprache: Englisch
Umfang: 288 S., 9.81 MB
E-Book
Format: PDF
DRM: Adobe DRM

Beschreibung

Defines the notion of an activity model learned from sensor data and presents key algorithms that form the core of the field

Activity Learning: Discovering, Recognizing and Predicting Human Behavior from Sensor Data provides an in-depth look at computational approaches to activity learning from sensor data. Each chapter is constructed to provide practical, step-by-step information on how to analyze and process sensor data. The book discusses techniques for activity learning that include the following:

Discovering activity patterns that emerge from behavior-based sensor dataRecognizing occurrences of predefined or discovered activities in real timePredicting the occurrences of activities

The techniques covered can be applied to numerous fields, including security, telecommunications, healthcare, smart grids, and home automation. An online companion site enables readers to experiment with the techniques described in the book, and to adapt or enhance the techniques for their own use.

With an emphasis on computational approaches,Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data provides graduate students and researchers with an algorithmic perspective to activity learning.

Autorenportrait

DIANE J. COOK, PhD, is a professor in the School of Electrical Engineering and Computer Science at Washington State University, USA. Her research relating to artificial intelligence and data mining have been supported by grants from the National Science Foundation, the National Institutes of Health, NASA, DARPA, USAF, NRL, and DHS. She is the co-author ofMining Graph Data andSmart Environments, both published by Wiley. Dr. Cook is an IEEE fellow and a member of AAAI.

NARAYANAN C. KRISHNAN, PhD, is a faculty member of the Department of Computer Science and Engineering at the Indian Institute of Technology Ropar, India. His research focuses on activity recognition, pervasive computing, and applied machine learning. Dr. Krishnan received the gold medal for academic excellence in Masters of Technology in Computer Science in 2004 and was nominated for the Best PhD Thesis Award at Arizona State University in 2010.

Inhalt

Preface ix

List of Figures xi

1. Introduction 1

2. Activities 5

2.1 Definitions 5

2.2 Classes of Activities 7

2.3 Additional Reading 8

3. Sensing 11

3.1 Sensors Used for Activity Learning 11

3.1.1 Sensors in the Environment 12

3.1.2 Sensors on the Body 15

3.2 Sample Sensor Datasets 17

3.3 Features 17

3.3.1 Sequence Features 21

3.3.2 Discrete Event Features 23

3.3.3 Statistical Features 25

3.3.4 Spectral Features 31

3.3.5 Activity Context Features 34

3.4 Multisensor Fusion 34

3.5 Additional Reading 38

4. Machine Learning 41

4.1 Supervised Learning Framework 41

4.2 Naïve Bayes Classifier 44

4.3 Gaussian Mixture Model 48

4.4 Hidden Markov Model 50

4.5 Decision Tree 54

4.6 Support Vector Machine 56

4.7 Conditional Random Field 62

4.8 Combining Classifier Models 63

4.8.1 Boosting 64

4.8.2 Bagging 65

4.9 Dimensionality Reduction 66

4.10 Additional Reading 72

5. Activity Recognition 75

5.1 Activity Segmentation 76

5.2 Sliding Windows 81

5.2.1 Time Based Windowing 81

5.2.2 Size Based Windowing 82

5.2.3 Weighting Events within a Window 83

5.2.4 Dynamic Window Sizes 87

5.3 Unsupervised Segmentation 88

5.4 Measuring Performance 92

5.4.1 Classifier-Based Activity Recognition Performance Metrics 95

5.4.2 Event-Based Activity Recognition Performance Metrics 99

5.4.3 Experimental Frameworks for Evaluating Activity Recognition 102

5.5 Additional Reading 103

6. Activity Discovery 107

6.1 Zero-Shot Learning 108

6.2 Sequence Mining 110

6.2.1 Frequency-Based Sequence Mining 111

6.2.2 Compression-Based Sequence Mining 112

6.3 Clustering 117

6.4 Topic Models 119

6.5 Measuring Performance 121

6.5.1 Expert Evaluation 121

6.6 Additional Reading 124

7. Activity Prediction 127

7.1 Activity Sequence Prediction 128

7.2 Activity Forecasting 133

7.3 Probabilistic Graph-Based Activity Prediction 137

7.4 Rule-Based Activity Timing Prediction 139

7.5 Measuring Performance 142

7.6 Additional Reading 146

8. Activity Learning in the Wild 149

8.1 Collecting Annotated Sensor Data 149

8.2 Transfer Learning 158

8.2.1 Instance and Label Transfer 162

8.2.2 Feature Transfer with No Co-occurrence Data 166

8.2.3 Informed Feature Transfer with Co-occurrence Data 167

8.2.4 Uninformed Feature Transfer with Co-occurrence Data Using a TeacherLearner Model 168

8.2.5 Uninformed Feature Transfer with Co-occurrence Data Using Feature Space Alignment 170

8.3 Multi-Label Learning 170

8.3.1 Problem Transformation 173

8.3.2 Label Dependency Exploitation 174

8.3.3 Evaluating the Performance of Multi-Label Learning Algorithms 179

8.4 Activity Learning for Multiple Individuals 180

8.4.1 Learning Group Activities 180

8.4.2 Train on One/Test on Multiple 183

8.4.3 Separating Event Streams 185

8.4.4 Tracking Multiple Users 188

8.5 Additional Reading 190

9. Applications of Activity Learning 195

9.1 Health 195

9.2 Activity-Aware Services 198

9.3 Security and Emergency Management 199

9.4 Activity Reconstruction, Expression and Visualization 201

9.5 Analyzing Human Dynamics 207

9.6 Additional Reading 210

10. The Future of Activity Learning 213

Appendix: Sample Activity Data 217

Bibliography 237

Index 253

Informationen zu E-Books

„E-Book“ steht für digitales Buch. Um diese Art von Büchern lesen zu können wird entweder eine spezielle Software für Computer, Tablets und Smartphones oder ein E-Book Reader benötigt. Da viele verschiedene Formate (Dateien) für E-Books existieren, gilt es dabei, einiges zu beachten.
Von uns werden digitale Bücher in drei Formaten ausgeliefert. Die Formate sind EPUB mit DRM (Digital Rights Management), EPUB ohne DRM und PDF. Bei den Formaten PDF und EPUB ohne DRM müssen Sie lediglich prüfen, ob Ihr E-Book Reader kompatibel ist. Wenn ein Format mit DRM genutzt wird, besteht zusätzlich die Notwendigkeit, dass Sie einen kostenlosen Adobe® Digital Editions Account besitzen. Wenn Sie ein E-Book, das Adobe® Digital Editions benötigt herunterladen, erhalten Sie eine ASCM-Datei, die zu Digital Editions hinzugefügt und mit Ihrem Account verknüpft werden muss. Einige E-Book Reader (zum Beispiel PocketBook Touch) unterstützen auch das direkte Eingeben der Login-Daten des Adobe Accounts – somit können diese ASCM-Dateien direkt auf das betreffende Gerät kopiert werden.
Da E-Books nur für eine begrenzte Zeit – in der Regel 6 Monate – herunterladbar sind, sollten Sie stets eine Sicherheitskopie auf einem Dauerspeicher (Festplatte, USB-Stick oder CD) vorsehen. Auch ist die Menge der Downloads auf maximal 5 begrenzt.