List of Contributors xxi
About the Editors xxvii
Part A Concepts and Standards for a Secure Water Harvesting1
1 Concept and Technology of Rainwater Harvesting3
Fayez Abdulla, Cealeen Abdulla, and Saeid Eslamian
1.1 Introduction 3
1.2 Concept of Rainwater Harvesting 4
1.3 Technologies of Rainwater Harvesting 5
1.3.1 Micro-Catchment Systems 6
1.3.1.1 Rooftop System 6
1.3.1.2 On-Farm Systems 7
1.3.2 Macro-Catchment Systems 7
1.4 Advantages and Disadvantages of Rainwater Harvesting 8
1.4.1 Advantages of Roof Rainwater Harvesting (RRWH) 8
1.4.2 Disadvantages of RRWH 10
1.5 Feasibility of Rainwater Harvesting across Different Climatic Zones 10
1.5.1 Physical Feasibility 10
1.5.2 Technical Aspects 10
1.5.3 Social Aspects 11
1.5.4 Financial Aspects 11
1.6 Roof Rainwater Harvesting System Components 11
1.6.1 Catchment Area 11
1.6.2 Conveyance System 12
1.6.3 Storage Tank 12
1.6.4 First Flush 13
1.7 Calculation of Potential HarvestedWater 13
1.8 Water Quality and its Health and Environmental Impacts 14
1.9 System Operation and Maintenance 14
1.10 Conclusion 15
References 15
2 Rainwater Harvesting: Recent Developments and Contemporary Measures17
Aline Pires Veról, Marcelo Gomes Miguez, Elaine Garrido Vazquez, Fernanda Rocha Thomaz, Bruna Peres Battemarco, and Assed Naked Haddad
2.1 Introduction 17
2.2 Water Resource Management 18
2.2.1 Water Supply 19
2.2.2 Water Demands 19
2.2.3 Water Scarcity 19
2.2.4 Regulatory Framework 21
2.2.5 Recent Developments 21
2.2.5.1 Water-Energy Nexus 22
2.2.5.2 Net-Zero Water Buildings 24
2.3 Water Management at the Building Scale 25
2.3.1 Design of a Rainwater Harvesting System 26
2.3.1.1 Collection Surface (or Roof Surface) 26
2.3.1.2 Gutters and Pipes 26
2.3.1.3 Storage Tanks (Reservoirs) 27
2.3.1.4 Rainwater Treatment Systems 32
2.3.1.5 Rainwater Pumping Station 33
2.3.1.6 Water Supply System (Water Pipes) 33
2.3.2 Source Control Systems 33
2.4 Analysis of Payback of Rainwater Harvesting Systems 34
2.5 Conclusion 35
Acknowledgment 35
References 36
3 Standards for Rainwater Catchment Design39
Sisuru Sendanayake and Saeid Eslamian
3.1 Introduction 39
3.2 Catchment Surface 40
3.2.1 Collection Efficiency 41
3.2.2 Pollutants on the Catchment Surface 41
3.3 Conveyance System 42
3.3.1 Filtering Devices in RWH Systems 43
3.4 Storage Tank 44
3.4.1 Sizing of the Storage Tank 44
3.4.1.1 General Methods of Determining the Tank Capacities of RTRWHS 44
3.4.1.2 Sizing Based on Supply (Mass Balance Method or Rainfall Mass Curve Analysis) 44
3.4.1.3 Sizing Based on Computer Models 45
3.4.1.4 Sizing Based on Design Charts 45
3.4.2 Advanced Methods of Determining Optimum Tank Capacities of RTRWH Systems 45
3.4.2.1 Critical Period Model 45
3.4.2.2 Moran Model 45
3.4.2.3 Behavioral Models 45
3.4.3 Investigating the Performance of RTRWH System Using the Behavioral Model 45
3.4.3.1 Yield after Spillage (YAS) Operating Model 46
3.4.3.2 Predicting the Performance of the RTRWH System Using the Behavioral Model 46
3.4.3.3 Generic Curves for System Performance of a RTRWH System 47
3.4.3.4 Sample Calculation for Sizing Storage of a RWH System 48
3.4.3.5 Use of Reference Maps to Find the Effective Combinations of Roof Area and Storage Capacity 49
3.4.4 Positioning of the Storage Tank 49
3.4.5 Cascading Multi Tank Model 51
3.4.6 Tank Materials and Life Cycle Energy (LCE) of Tanks 53
3.5 Pre-treatment of Roof Collection 53
3.6 Distribution System and Related Regulations 54
3.7 Conclusion 54
References 55
4 Water Security Using Rainwater Harvesting57
Adebayo Eludoyin, Oyenike Eludoyin, Tanimola Martins, Mayowa Oyinloye, and Saeid Eslamian
4.1 Introduction 57
4.2 Concept of Rainwater Harvesting 57
4.3 Rainwater Collection Systems 58
4.4 Rainwater Storage 61
4.5 Importance of Rainwater Harvesting 61
4.6 Quality Assessment of Harvested Rainwater 64
4.7 Problems Associated with Rainwater Harvesting 64
4.8 Conclusion 65
References 65
Part B Water Harvesting Resources69
5 Single-Family Home and Building Rainwater Harvesting Systems71
Duygu Erten
5.1 Introduction 71
5.2 Historical Development of RWH and Utilization 71
5.3 Pros and Cons of RWH Systems 72
5.3.1 Economics of RWH 73
5.3.2 Cisterns as Flood Mitigation/Control Systems 74
5.3.3 Types of RWH Systems 74
5.3.4 Water Harvesting:Water Collection Source 74
5.3.5 RWH System: System Components 74
5.3.6 Rooftop Material 75
5.3.7 RoofWashers 75
5.3.8 Maintenance 75
5.3.9 Smart Rainwater Systems 76
5.3.10 RWH Systems with Solar Electric Pump 77
5.3.11 Water Harvesting from Air 77
5.4 Current Practices Around theWorld 78
5.5 Health Risks of Roof-Collected Rainwater 78
5.6 Guides, Policy, and Incentives 79
5.7 Green Building Certification Systems and RWH 82
5.7.1 Code for Sustainable Homes/BREEAM Support/Points Awarded 84
5.8 Conclusion 84
References 85
6 Water Harvesting in Farmlands87
Elena Bresci and Giulio Castelli
6.1 Introduction 87
6.2 Water Harvesting: Definitions 87
6.3 Floodwater Harvesting in Farmlands 88
6.3.1 Case Study: Spate Irrigation Systems in Raya Valley 90
6.3.1.1 Modernization of Spate Irrigation in Raya Valley 90
6.3.1.2 Water Rights and Regulation of Raya Valley Spate Irrigation Systems 91
6.4 Macro-CatchmentWater Harvesting in Farmlands 91
6.4.1 Case Study: Sand Dams in Kenya 91
6.4.1.1 GIS and Local Knowledge for Selecting Best Sites for Sand Dam Constructions in Kenya 92
6.5 Micro-CatchmentWater Harvesting in Farmlands 94
6.5.1 Case Study: Multiple Micro Catchment Systems in Ethiopia 94
6.6 RooftopWater Harvesting in Farmlands 95
6.6.1 Case Study: RooftopWater Harvesting in Guatemala 95
6.7 Water Harvesting and Fertilization 96
6.8 Conclusions and Future Perspectives 96
References 97
7 Rainwater Harvesting for Livestock101
Billy Kniffen
7.1 Introduction 101
7.2 Rainfall Harvesting on the Land 101
7.3 AnimalWater Requirements 102
7.4 Harvested Rainfall as a Source for Livestock 103
7.5 Requirements for Harvesting Rainwater for Livestock 104
7.6 Distribution ofWater for Livestock 107
7.7 Rainwater System Maintenance 107
7.8 Conclusion 107
References 108
8 Road Water Harvesting109
Negin Sadeghi and Saeid Eslamian
8.1 Introduction 109
8.2 Water Harvesting Systems and Their Characteristics 110
8.2.1 Rainwater Harvest System 111
8.2.2 Necessity and Advantages of WHS 113
8.2.3 Types ofWater Harvesting Systems 113
8.3 RoadWater Harvesting 113
8.3.1 Rolling Dips 117
8.3.2 Water Bars 117
8.3.3 Side Drains 118
8.3.4 Miter 118
8.3.5 Culverts 118
8.3.6 Gully Prevention and Reclamation 118
8.3.6.1 Terrain 119
8.3.6.2 Climate 119
8.3.6.3 Soils 119
8.3.7 Inclusive Planning/Water-Friendly Road Design 120
8.3.8 Road WHS and Planting 122
8.3.8.1 Site Selection 123
8.4 Conclusion 123
References 124
Part C Hydroinformatic and Water Harvesting127
9 Application of RS and GIS for Locating Rainwater Harvesting Structure Systems129
Dhruvesh Patel, Dipak R. Samal, Cristina Prieto, and Saeid Eslamian
9.1 Introduction 129
9.2 Experimental Site 131
9.3 Methodology 131
9.3.1 Drainage Network 131
9.3.2 Digital Elevation Model and Slope 131
9.3.3 Soil Map 131
9.3.4 Land Use and Land Cover (LULC) 132
9.3.5 Morphometric Analysis 133
9.3.6 Decision Rules for Site Selection ofWater Harvesting Structures 133
9.4 Results and Discussions 137
9.4.1 Basic Parameters 137
9.4.1.1 Area (A) and Perimeter (P) 137
9.4.1.2 Total Length of Streams (L) 137
9.4.1.3 Stream Order (u) 137
9.4.1.4 Basin Length (Lb) 137
9.4.2 Linear Parameters 138
9.4.2.1 Bifurcation Ration (Rb) 138
9.4.2.2 Drainage Density (Dd) 139
9.4.2.3 Stream Frequency (Fu) 139
9.4.2.4 Texture Ratio (T) 139
9.4.2.5 Length of Overland Flow (Lo) 139
9.4.3 Shape Parameters 139
9.4.3.1 Form Factor (Rf) 139
9.4.3.2 Shape Factor (Bs) 140
9.4.3.3 Elongation Ratio (Re) 140
9.4.3.4 Compactness Coefficient (Cc) 140
9.4.3.5 Circularity Ratio (Rc) 140
9.4.4 Compound Factor and Ranking 140
9.4.5 Positioning a Water Harvesting Structure 140
9.5 Conclusion 141
References 142
10 Information Technology in Water Harvesting145
S. Sreenath Kashyap, M.V.V. Prasad Kantipudi, Saeid Eslamian, Maryam Ghashghaie, Nicolas R. Dalezios, Ioannis Faraslis, and Kaveh Ostad-Ali-Askari
10.1 Introduction 145
10.2 Water Harvesting Methods 145
10.2.1 Basin Method 145
10.2.2 Stream Channel Method 145
10.2.3 Ditch and Furrow Method 145
10.2.4 Flooding Method 146
10.2.5 Irrigation Method 146
10.2.6 Pit Method 146
10.2.7 RechargeWell Method 147
10.3 The Internet of Things (IoT) 147
10.3.1 Applications of the IoT inWater Harvesting 147
10.3.1.1 Estimation of the Soil Moisture Content 147
10.3.1.2 Determining the Quality of Groundwater 147
10.3.1.3 Rate of Infiltration in the Soil 148
10.3.1.4 Delineation of Aquifer Boundaries and Estimation of Storability of Aquifer 148
10.3.1.5 Depth of Aquifer from the Surface of the Earth 148
10.3.1.6 Identification of Sites for Artificial Recharge Structures 148
10.4 Assessing the Available Subsurface Resources Using the IoT 148
10.5 The IoT Devices for Efficient Agricultural/Irrigation Usage 150
10.6 Conclusions 151
References 151
11 Global Satellite-Based Precipitation Products153
Zhong Liu, Dana Ostrenga, Andrey Savtchenko, William Teng, Bruce Vollmer, Jennifer Wei, and David Meyer
11.1 Introduction 153
11.2 Precipitation Measurements from Space 154
11.3 Overview of NASA Satellite-Based Global Precipitation Products and Ancillary Products at GES DISC 155
11.3.1 TRMM and GPM Missions 155
11.3.2 Multi-Satellite and Multi-Sensor Merged Global Precipitation Products 156
11.3.3 Global and Regional Land Data Assimilation Products 157
11.3.4 Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) Products 158
11.3.5 Ancillary Products at GES DISC 158
11.4 Data Services 159
11.4.1 Point-and-Click Online Tools 159
11.4.2 Data Rod Services 160
11.4.3 Subsetting and Format Conversion Services 161
11.4.4 OtherWeb Data Services and Information 161
11.5 Examples 163
11.5.1 Maps of Seasonal Averages of Precipitation 163
11.5.2 Time Series Analysis of Precipitation inWatersheds 164
11.5.3 Changes in Precipitation Patterns 165
11.6 Conclusion 171
Acknowledgments 172
References 172
12 Risk Analysis of Water Harvesting Systems177
Maria Do Céu Almeida, Nelson Carriço, João Santos and Saeid Eslamian
12.1 Introduction 177
12.2 Concepts and Terminology 177
12.3 General Approaches to Risk Management Applicable to RWHS 177
12.4 Supporting Risk Management for RWHS 181
12.5 Hazards and Exposure Modes 182
12.6 Rainwater Collection Reliability asWater Source 183
12.7 Specific Risk Treatment Actions 185
12.8 Process Control and Monitoring 186
12.9 Conclusion 187
References 187
Part D Hydrological Aspects of Water Harvesting191
13 Return Period Determination for Rainwater Harvesting System Design193
Sandeep Samantaray, Dillip K. Ghose, and Saeid Eslamian
13.1 Introduction 193
13.2 Study Area 194
13.2.1 Water Level Fluctuation 195
13.3 Overview of Rainwater Harvesting 197
13.3.1 Different Types ofWater Harvesting Techniques 197
13.3.1.1 RooftopWater Harvesting (RTWH) 197
13.3.1.2 Micro-Catchment System of Rainwater Harvesting (MiCSRWH) 197
13.3.1.3 Macro-Catchment System of Rainwater Harvesting (MaCSRWH) 197
13.3.1.4 Floodwater Harvesting (FWH) 197
13.3.1.5 Storage Structure Systems 197
13.3.1.6 Spreading ofWater 198
13.4 Methodology 198
13.4.1 Evaluation of Return Period 198
13.4.2 Design ofWater Harvesting Structures 198
13.4.2.1 Design Approach 198
13.4.2.2 Estimation of Runoff Rate 198
13.4.2.3 Estimation of Runoff Volume 198
13.4.2.4 Runoff Coefficients 199
13.4.2.5 Normal Distribution Method 199
13.4.2.6 Gumbel Distribution Method 199
13.4.2.7 Extreme Value Type-I Distribution 200
13.4.2.8 Log Pearson Type-III Distribution 200
13.5 Results and Discussions 201
13.6 Conclusions 203
References 203
14 Rainwater Harvesting Impact on Urban Groundwater207
A. Jebamalar, R. Sudharsanan, G. Ravikumar, and Saeid Eslamian
14.1 Introduction 207
14.2 State of the Art 208
14.3 Study Area and Data Collection 209
14.4 Methodology 213
14.5 Temporal Analysis of Groundwater Level 214
14.6 Spatial Analysis of Groundwater Table 215
14.7 Impact of RWH on Groundwater Recharge 215
14.8 Model Simulations for Impact of RWH Systems 217
14.9 Model Predictions for the Future 218
14.10 Conclusion 222
Acknowledgement 223
References 223
15 Effects of Water Harvesting Techniques on Sedimentation225
Siavash Fasihi, and Saeid Eslamian
15.1 Introduction 225
15.1.1 How to Incorporate WHTs in Models 226
15.2 Qualitative Effects and Data Collection 226
15.2.1 Measurements and Data Input 227
15.3 Sedimentation in Small Check Dams 228
15.4 Revised Universal Soil Loss Equation (RUSLE) 229
15.4.1 Abilities and Limitations of RUSLE 234
15.5 Limburg Soil Erosion Model (LISEM) 235
15.5.1 Model Implementation 235
15.5.2 Calibration and Modification of p-Factor 236
15.5.3 Assessing Effects ofWHTs on Sedimentation Using LISEM 237
15.6 Conclusion 238
References 238
Part E Hydrometeorological Water Harvesting243
16 Principles and Applications of Atmospheric Water Harvesting245
Mousa Maleki, Saeid Eslamian, and Boutaghane Hamouda
16.1 Introduction 245
16.1.1 UnconventionalWater Resources 245
16.2 AtmosphericWater Harvesting Necessity 245
16.3 Methods of AtmosphericWater Harvesting 246
16.3.1 Vapor Condensing 246
16.3.2 Active Cooling of the Ambient Air 247
16.3.3 Fog Harvesting Age-Old Practices that StillWork 247
16.4 Energy Requirements of AMH andWater Production Costs 247
16.5 Atmospheric Vapor Harvesting Systems 248
16.5.1 Water Harvesting from Air with Metal-Organic Frameworks Powered by Natural Sunlight 248
16.5.2 Atmospheric Vapor Harvesting Adsorption Materials 251
16.5.3 Applications of Superhydrophilic and Superhydrophobic Materials 252
16.5.4 Vapor Compression Refrigerating System 252
16.5.4.1 Water Generation System 252
16.5.4.2 Operation ofWater Generation Systems 253
16.5.4.3 Water Treatment System 253
16.5.4.4 Water Formation in a Humid Atmosphere 254
16.5.4.5 Computations and Estimations 254
16.5.4.6 Cooling Condensation Process 254
16.5.4.7 Compressor 255
16.5.4.8 Dew Point 255
16.5.4.9 Relative Humidity 255
16.5.4.10 Comparison Between Various Compression Systems 255
16.6 Conclusion 256
References 257
17 Dew Harvesting on High Emissive Natural and Artificial Passive Surfaces261
Jose Francisco Maestre-Valero, Bernardo Martin-Gorriz, Victoriano Martínez-Alvarez, and Saeid Eslamian
17.1 Introduction 261
17.2 Passive Surfaces for the Case Studies 262
17.2.1 Optical Properties 262
17.2.2 Passive Radiative Condensers and Foils 263
17.2.3 Experimental Pan 263
17.2.4 Agricultural Pond 263
17.3 Data Collection 264
17.3.1 Climate Measurements 264
17.3.2 Dew Measurements 264
17.3.2.1 RDCs 264
17.3.2.2 Experimental Pan 264
17.3.2.3 Agricultural Pond 265
17.3.3 Statistical Analysis 265
17.4 Case Studies for Dew Collection 265
17.4.1 Dew Collection on Passive Radiative Condensers 265
17.4.2 Dew Collection on the Experimental Pan 266
17.4.3 Dew Collection on an Agricultural Pond 267
17.5 Dew Modeling 267
17.5.1 Correlation with Climatic Variables 267
17.5.2 Mass Transfer Equation 268
17.6 Conclusion 270
Acknowledgments 271
References 271
18 Atmospheric Water Harvesting Using Waste Energy from Landfills and Oilfields273
Enakshi Wikramanayake, Onur Ozkan, Aritra Kar, and Vaibhav Bahadur
18.1 Introduction 273
18.2 Refrigeration-Based AtmosphericWater Harvesting Systems 275
18.3 ModelingWaste Natural Gas-Based AtmosphericWater Harvesting 276
18.4 Landfill Gas-Based AtmosphericWater Harvesting 277
18.4.1 Modeling LFG-Based AWH in the Barnett Shale 277
18.4.2 Benefits of LFG-Based AWH for the Barnett Shale 278
18.4.3 Techno-Economic Analysis of LFG-Powered AWH 279
18.4.4 Environmental Benefits of LFG-Powered AWH 282
18.5 Oilfield Gas-Based AtmosphericWater Harvesting 283
18.6 Sensitivity of theWater Harvest to Various Parameters 284
18.7 Comparison of AWH to Other Techniques for ProducingWater 285
18.8 Perspectives on AtmosphericWater Harvesting 285
18.9 Conclusions 286
Acknowledgements 286
References 286
Part F Environmental Aspects of Water Harvesting289
19 Treatment Techniques in Water Harvesting291
Brandon Reyneke, Monique Waso, Thando Ndlovu, Tanya Clements, Sehaam Khan, and Wesaal Khan
19.1 Introduction 291
19.2 Pretreatment of Harvested Rainwater: Prevention of Debris Entry and Sedimentation 292
19.3 Chemical Disinfection 293
19.3.1 Chlorination 293
19.3.2 Non-Chlorine Disinfectants 294
19.4 Physical Disinfection 295
19.4.1 Filtration Techniques 295
19.4.2 SODIS/UV Treatment 296
19.4.3 Thermal Disinfection 297
19.5 Biological Treatment 298
19.5.1 Slow-Sand and Granular Activated Carbon Filters 298
19.5.2 Coagulation and Bioflocculants 299
19.5.3 Bacteriophages and Bacteriophage Proteins 300
19.6 Conclusion 300
References 301
20 Water Recycling from Palm Oil Mill Effluent307
Hossein Farraji, Irvan Dahlan, and Saeid Eslamian
20.1 Introduction 307
20.2 Problem Statement 307
20.3 Palm Oil Production 308
20.4 POME as an Agro-IndustryWastewater 308
20.5 Characteristics of POME 308
20.5.1 Total Suspended Solids 310
20.5.1.1 Volatile Suspended Solids 310
20.5.2 Biological Oxygen Demand 310
20.5.3 Chemical Oxygen Demand 311
20.5.4 Color 311
20.5.5 Biodegradability of POME 311
20.6 POME Treatment Methods 312
20.6.1 Commercial Treatment Method 312
20.6.2 Non-Commercial Treatment Method 312
20.7 Water Recycling by Membrane Technique 313
20.7.1 Benefits and Drawbacks of Membrane Treatment Method for POME 314
20.8 Application of the SBR in POME Treatment 314
20.8.1 Factors Affecting the SBR System 315
20.8.2 Microbial Augmentation for POME 315
20.9 Discussions 316
20.10 Conclusion 316
References 316
Part G Green Water Harvesting321
21 Vegetation Advantages for Water and Soil Conservation323
Hadis Salehi Gahrizsangi, Saeid Eslamian, Nicolas R. Dalezios, Anna Blanta, and Mohadaseh Madadi
21.1 Introduction 323
21.2 Background 323
21.2.1 Soil Erosion Concepts 323
21.2.2 Water-Induced Erosion 324
21.2.3 Water-Induced Erosion in the Slope and Agricultural Farms 325
21.2.4 Soil andWater Conservation by Crop Management 326
21.2.5 Conservation by Vetiver Grass 328
21.3 Vegetation Advantage for Soil andWater Conservation in Artificial Plots 329
21.3.1 Soil Erosion in Malaysia 329
21.3.2 Soil andWater Conservation in Malaysia 331
21.3.3 Case Study: Application of Vetiver Grass for Soil andWater Conservation in Artificial Plots 331
21.4 Conclusions 334
References 335
22 Water Harvesting in Forests: An Important Step in Water-Food-Energy Nexus337
Rina Kumari and Saeid Eslamian
22.1 Introduction 337
22.2 GlobalWater Scarcity 337
22.3 Change in Land Use-Land Cover and its Impact on Forest andWater Resources 339
22.4 Forest Hydrology 339
22.4.1 Hydrologic Processes in Forest 339
22.4.2 Effects of Forest Structure on Hydrological Processes 340
22.4.2.1 Stemflow 340
22.4.2.2 Litterfall 341
22.4.3 Preconditions for Rainwater Infiltration 341
22.4.3.1 Vegetative Cover 342
22.4.3.2 Soil Type 342
22.4.4 Groundwater Conditions 342
22.4.5 Dimensions of Hydrological Services Governed by Forest 342
22.4.5.1 Water Quantity and Forests 342
22.4.5.2 Water Quality and Forests 342
22.4.5.3 Evapotranspiration, Precipitation, andWater Loss 342
22.4.5.4 Erosion/Sediment Control and Forests 343
22.4.5.5 Forests and Flood Control, Drought, and Fire Risks 343
22.4.5.6 Forests and Groundwater 343
22.4.5.7 Forests and Their Effect on Rainfall 343
22.4.5.8 Forests and Riparian Management 343
22.5 Rainwater Harvesting in Forests 343
22.5.1 Definition and Typology of Rainwater Harvesting Systems 343
22.6 Deforestation and its Impact 345
22.7 Forest Management andWatershed Development 346
22.8 Knowledge Gaps 347
22.9 Forests andWater in International Agreements 348
22.10 Role of Geospatial Technologies 348
22.11 Managing the Climate-Water-Forest Nexus for Sustainable Development 349
22.12 Case Studies 350
22.12.1 CombatingWater Scarcity in Latin America 350
22.12.2 Amazon River 350
22.12.3 Case Study of Southeast Asia 350
22.13 Conclusions 350
References 351
23 Rainwater and Green Roofs355
Sara Nazif, Seyed Ghasem Razavi, Pouria Soleimani, and Saeid Eslamian
23.1 Introduction 355
23.2 Green Roof Components 355
23.2.1 Vegetation 356
23.2.2 Growth Substrate 357
23.2.3 Filter Layer 357
23.2.4 Drainage Layer 358
23.2.5 Root Barrier 358
23.2.6 Waterproof Layer 358
23.2.7 Insulation Layer 358
23.2.8 Protection Layer 358
23.3 Green Roof Types 358
23.4 Green Roof Irrigation 359
23.5 Green Roof Standards 359
23.6 Green Roofs for Rainwater Collection and Storage 360
23.6.1 Hydrologic Modeling of Green Roof Performance 360
23.6.2 Green Roof Rainwater Retention Potential 362
23.6.3 Green Roof Characteristics and Rainwater Retention Potential 362
23.7 Green Roof Effect on Runoff Quality 363
23.8 Other Functions of Green Roofs 364
23.8.1 Improving Energy Usage Efficiency 365
23.8.2 Air Pollution Reduction 365
23.8.3 Human Feelings 366
23.8.4 Green Roof Effect on Urban Heat Island 366
23.8.5 Interior Noise Pollution Reduction 367
23.9 Cost and Benefit Analysis of Green Roofs 367
23.10 Conclusion 369
References 369
24 Green Landscaping and Plant Production with Water Harvesting Solutions373
Saeid Eslamian, Saeideh Parvizi, and Sayed Salman Ghaziaskar
24.1 Introduction 373
24.2 Water Harvesting 374
24.3 Rainwater Harvesting 374
24.3.1 Rainwater Harvesting in the Past 374
24.3.2 Modern Rainwater Harvesting 375
24.4 The Goals and Benefits of Rainwater Harvesting 376
24.5 Impact of RWHR on Infiltration and Surface Runoff Processes 376
24.5.1 Groundwater Recharge 376
24.5.2 Surface Runoff Estimation 376
24.6 Climate Change and RWH 376
24.7 Landscape Functions and RWH 377
24.8 Hydrological Functions and RWH 377
24.8.1 Infiltration 377
24.8.2 Groundwater Recharge 377
24.8.3 Water Competition 378
24.9 Soil Fertility and Biomass Production 378
24.9.1 Soil Fertility 378
24.9.2 Crop Yields and Biomass Production 378
24.9.3 Biodiversity Conservation 378
24.9.3.1 Changes in Floral Diversity 378
24.9.3.2 Changes in Structural Heterogeneity/Patchiness 378
24.9.3.3 Changes in Animal Diversity 379
24.9.4 Sustainable Livelihoods 379
24.9.4.1 Food Security 379
24.9.4.2 Conflicts ConcerningWater Resources 379
24.9.4.3 Income/Social Balance 379
24.10 Discussions 380
24.11 Conclusions 381
References 381
Part H Reliable Rainwater Harvesting and Storage Systems385
25 Comparing Rainwater Storage Options387
Sara Nazif, Hamed Tavakolifar, Hossein Abbasizadeh, and Saeid Eslamian
25.1 Introduction 387
25.2 History of Rainwater Harvesting 387
25.3 Benefits of Rainwater Storage 388
25.4 Main Rainwater Storage Options 389
25.4.1 Surface Runoff Harvesting 389
25.4.1.1 Surface Runoff Harvesting Using Surface and Underground Structures 389
25.4.1.2 Surface Runoff Harvesting Using Paved and Unpaved Roads 390
25.4.2 Rooftop Rainwater Harvesting 390
25.4.2.1 Components of Rooftop Rainwater Harvesting 390
25.4.2.2 The Usage of HarvestedWater 394
25.4.3 Rainwater Harvesting In Situ 394
25.4.3.1 Use of Topographic Depressions as Rainfall Harvesting Areas 394
25.4.3.2 Use of Furrows as Rainwater Storage Areas 395
25.5 Comparing Rainwater Storage Options 395
25.6 Conclusion 398
References 398
26 Rainwater Harvesting Storage-Yield-Reliability Relationships401
John Ndiritu
26.1 Introduction 401
26.2 The Rainwater Harvesting Storage-Yield-Reliability Problem 401
26.3 Modeling Storage-Yield-Reliability Relationships 402
26.3.1 Modeling Approaches and Methods 402
26.3.2 Behavior Analysis (Continuous Simulation) Method 405
26.3.3 Sequent Peak Algorithm and Rippls Method 407
26.3.4 Generalized Storage-Yield-Reliability Relationships 409
26.4 Key Considerations 411
26.4.1 How is the Adequacy of the Rainfall Time Series Assessed? 411
26.4.2 What Modeling Methods are Best Suited for Use? 411
26.4.3 When is It Essential to Apply Statistically-Based Reliability? How is this Done? 412
26.4.4 When Do Generalized Storage-Yield-Reliability Relationships Need to Be Used? 412
26.5 Conclusions 412
References 413
27 Towards Developing Generalized Equations for Calculating Potential Rainwater Savings417
Monzur A. Imteaz, Muhammad Moniruzzaman and, Abdullah Yilmaz
27.1 Introduction 417
27.2 State of the Art 418
27.3 Methodology 419
27.4 Study Area and Data 420
27.5 Results 421
27.6 Conclusions 423
Acknowledgement 424
References 424
Part I Sustainable Water Harvesting and Conservation in a Changing Climate427
28 Water Harvesting, Climate Change, and Variability429
Jew Das, Manish Kumar Goyal, and N.V. Umamahesh
28.1 Introduction 429
28.2 Water Harvesting 431
28.2.1Trans-Himalayan Region 431
28.2.1.1 Zing 431
28.2.2 Western Himalaya 432
28.2.2.1 Kul 432
28.2.2.2 Naula 432
28.2.2.3 Khatri 432
28.2.3 Eastern Himalaya 432
28.2.3.1 Apatani 432
28.2.4 North Eastern Hill Ranges 432
28.2.4.1 Zabo 432
28.2.4.2 Bamboo Drip Irrigation 432
28.2.5 Brahmaputra Valley 433
28.2.5.1 Dongs 433
28.2.5.2 Dungs 433
28.2.6 Indo-Gangetic Plains 433
28.2.6.1 Ahar and Pynes 433
28.2.6.2 Bengals Inundation Channel 433
28.2.6.3 Dighis 433
28.2.6.4 Baolis 433
28.2.7 Thar Desert 433
28.2.7.1 Kunds 433
28.2.7.2 Kuis/Beris 433
28.2.7.3 Baoris/Bers 433
28.2.7.4 Jhalaras 434
28.2.7.5 Nadis 434
28.2.7.6 Tobas 434
28.2.7.7 Tankas 434
28.2.7.8 Khadin 434
28.2.7.9 Virdas 434
28.2.7.10 Paar System 434
28.2.8 Central Highlands 434
28.2.8.1 Talab 434
28.2.8.2 Saza Kuva 434
28.2.8.3 Johad 434
28.2.8.4 Naada/Bandha 434
28.2.8.5 Pat 434
28.2.8.6 Repat 434
28.2.8.7 Chandela Tank 435
28.2.8.8 Bundela Tank 435
28.2.9 Eastern Highlands 435
28.2.9.1 Katas /Mundas/Bandhas 435
28.2.10 Deccan Plateau 435
28.2.10.1 Cheruvu 435
28.2.10.2 Kohli Tanks 435
28.2.10.3 Bhanadaras 435
28.2.10.4 Phad 435
28.2.10.5 Kere 435
28.2.10.6 The Ramtek Model 435
28.2.11 Western Ghats 435
28.2.11.1 Surangam 435
28.2.12 Western Coastal Plains 435
28.2.12.1 Virdas 435
28.2.13 Eastern Ghats 435
28.2.13.1 Korambus 435
28.2.14 Eastern Coastal Plains 435
28.2.14.1 Eri 435
28.2.14.2 Ooranis 435
28.2.15 Rooftop Harvesting 436
28.2.16 Perforated Pavements 436
28.2.17 Infiltration Pits 436
28.2.18 Swale 436
28.3 Case Study 437
28.3.1 Study Area 437
28.3.2 Climate and Rainfall 437
28.3.3 GCM Projection and Scenarios 438
28.3.4 Surplus Intensity 439
28.4 Results and Discussion 439
28.4.1 Understanding the Uncertainty 441
28.5 Conclusion 443
References 444
29 Water Harvesting and Sustainable Tourism447
Neda Torabi Farsani, Homa Moazzen Jamshidi, Mohammad Mortazavi, and Saeid Eslamian
29.1 Introduction 447
29.2 Water Management: An Approach to Sustainable Tourism 447
29.2.1 Water Harvesting and Museums 449
29.3 Tourism andWater Harvesting Economy 451
29.3.1 The Impact of Tourism onWater Demand 451
29.3.2 Water Harvesting as a Supply-SideWater Management Strategy 451
29.3.3 Financial and Economic Analysis of Rainwater Harvesting Projects 452
29.3.4 Raising Revenue for Financing Rainwater Harvesting Projects 452
29.3.5 Rainwater Harvesting in Modern Tourism 452
29.4 Conclusion 453
References 453
30 Rainwater Harvesting Policy Issues in the MENA Region: Lessons Learned, Challenges, and
Sustainable Recommendations 457
Muna Yacoub Hindiyeh, Mohammed Matouq, and Saeid Eslamian
30.1 Introduction 457
30.2 Definitions of RWH 457
30.3 Rainwater Harvesting Toward Millennium and Sustainable Development Goals 458
30.4 Water Administration and Legislation 459
30.5 Policy and Regulatory Approaches to RWH Use 459
30.5.1 The Need for Policy 459
30.5.2 Key Characteristics of Good Policy 461
30.5.3 Framework for a Policy 461
30.5.3.1 Policy Must Balance the Risks from Controlled RWH Use with the Alternatives 461
30.5.3.2 Policy Must Be Integrated 461
30.5.3.3 Policy Should Be Simple and Incentivize RWH Use 461
30.5.3.4 Risk Management Should Be Behavior Based, Rather than Technology orWater-Quality Based 462
30.5.3.5 Policy Development Should Include Stakeholders 462
30.5.3.6 Policy Must Be Clear Regarding Implementation 462
30.5.3.7 Policy Should Not Place Undue Financial Burdens on Users 462
30.5.3.8 Privately Owned RWH Systems and Use Should Be Considered for Poor Communities 462
30.5.3.9 Policy Should Differentiate with Regard to Scale 463
30.6 Considerations When Establishing a Municipal Rainwater Harvesting Program 463
30.7 Regulatory Approaches in Other Countries 464
30.7.1 Australia 464
30.7.2 Germany 465
30.7.3 United Kingdom 465
30.7.4 Bermuda 465
30.7.5 The Netherlands 465
30.7.6 India 465
30.7.7 Indonesia 466
30.7.8 Brazil 466
30.7.9 China 466
30.7.10 Capiz Province, The Philippines 466
30.7.11 United States 466
30.7.12 St. Thomas, US Virgin Islands 467
30.7.13 Portland 468
30.7.14 Singapore 468
30.7.15 Kenya 468
30.7.16 Namibia 469
30.7.17 Middle East 469
30.8 Challenges and Limitations 469
30.9 Future Recommendations for the MENA Region 470
30.10 Conclusion 470
References 471
Index 475