Beschreibung
Inhaltsangabe1 Inference about variation.- 1.1 Imperfection and variation.- 1.2 Educational measurement and testing.- 1.3 Statistical context.- 1.3.1 Statistical objects.- 1.3.2 Estimation.- 1.3.3 Correlation structure and similarity.- 1.3.4 Notation.- 2 Reliability of essay rating.- 2.1 Introduction.- 2.2 Models.- 2.3 Estimation.- 2.4 Extensions.- 2.5 Diagnostic procedures.- 2.6 Examples.- 2.6.1 Advanced Placement tests.- 2.7 Standard errors.- 2.7.1 Simulations.- 2.8 Summary.- 2.9 Literature review.- 3 Adjusting subjectively rated scores.- 3.1 Introduction.- 3.2 Estimating severity.- 3.3 Examinee-specific shrinkage.- 3.3.1 Rating in a single session.- 3.3.2 Shrinking to the rater's mean.- 3.4 General scheme.- 3.4.1 Sensitivity and robustness.- 3.5 More diagnostics.- 3.6 Examples.- 3.6.1 Advanced Placement tests.- 3.7 Estimating linear combinations of true scores.- 3.7.1 Optimal linear combinations.- 3.8 Summary.- Appendix. Derivation of MSE for the general adjustment scheme.- 4 Rating several essays.- 4.1 Introduction.- 4.2 Models.- 4.3 Estimation.- 4.4 Application.- 4.4.1 Itemwise analyses.- 4.4.2 Simultaneous analysis.- 4.5 Choice of essay topics.- 4.5.1 Modelling choice.- 4.5.2 Simulations.- 4.6 Summary.- 5 Summarizing item-level properties.- 5.1 Introduction.- 5.2 Differential item functioning.- 5.3 DIF variance.- 5.4 Estimation.- 5.5 Examples.- 5.5.1 National Teachers' Examination.- 5.5.2 GRE Verbal test.- 5.6 Shrinkage estimation of DIF coefficients.- 5.7 Model criticism and diagnostics.- 5.8 Multiple administrations.- 5.8.1 Estimation.- 5.8.2 Examples.- 5.8.3 Other applications.- 5.9 Conclusion.- 6 Equating and equivalence of tests.- 6.1 Introduction.- 6.2 Equivalent scores.- 6.2.1 Equating test forms.- 6.2.2 Half-forms.- 6.2.3 Linear true-score equating.- 6.3 Estimation.- 6.4 Application.- 6.4.1 Data and analysis.- 6.4.2 Comparing validity.- 6.4.3 Model criticism.- 6.5 Summary.- 7 Inference from surveys with complex sampling design.- 7.1 Introduction.- 7.2 Sampling design.- 7.2.1 The realized sampling design.- 7.2.2 The 'model' sampling design.- 7.2.3 Sampling weights and non-response.- 7.3 Proficiency scores.- 7.3.1 Imputed values.- 7.4 Jackknife.- 7.5 Model-based method.- 7.5.1 Stratification and clustering.- 7.5.2 Sampling variance of the ratio estimator.- 7.5.3 Within-cluster variance.- 7.5.4 Between-cluster variance.- 7.5.5 Multivariate outcomes.- 7.6 Examples.- 7.6.1 Subpopulation means.- 7.6.2 How much do weights matter?.- 7.7 Estimating proportions.- 7.7.1 Percentiles.- 7.8 Regression with survey data.- 7.9 Estimating many subpopulation means.- 7.10 Jackknife and model-based estimators.- 7.11 Summary.- 8 Small-area estimation.- 8.1 Introduction.- 8.2 Shrinkage estimation.- 8.3 Regression with survey data.- 8.4 Fitting two-level regression.- 8.4.1 Restricted maximum likelihood.- 8.4.2 Sampling weights.- 8.5 Small-area mean prediction.- 8.6 Selection of covariates.- 8.7 Application.- 8.7.1 No adjustment.- 8.7.2 Adjustment for covariates.- 8.7.3 Prediction and cross-validation.- 8.7.4 Refinement.- 8.8 Summary and literature review.- 9 Cut scores for pass/fail decisions.- 9.1 Introduction.- 9.2 Models.- 9.3 Fitting logistic regression.- 9.3.1 Generalized linear models.- 9.3.2 Random coefficients.- 9.3.3 Cut score estimation.- 9.4 Examples.- 9.4.1 PPST Writing test.- 9.4.2 Physical Education.- 9.5 Summary.- 10 Incomplete longitudinal data.- 10.1 Introduction.- 10.2 Informative missingness.- 10.3 Longitudinal analysis.- 10.4 EM algorithm.- 10.5 Application.- 10.6 Estimation.- 10.6.1 Variation in growth.- 10.6.2 Covariate adjustment.- 10.6.3 Missing covariate data.- 10.6.4 Standard errors.- 10.6.5 Clustering.- 10.7 Summary.- References.
Produktsicherheitsverordnung
Hersteller:
Springer Verlag GmbH
juergen.hartmann@springer.com
Tiergartenstr. 17
DE 69121 Heidelberg