0

Mathematical Problems in Data Science

eBook - Theoretical and Practical Methods

Erschienen am 15.12.2015, 1. Auflage 2015
136,95 €
(inkl. MwSt.)

Download

E-Book Download
Bibliografische Daten
ISBN/EAN: 9783319251271
Sprache: Englisch
Umfang: 0 S., 4.17 MB
E-Book
Format: PDF
DRM: Digitales Wasserzeichen

Beschreibung

This book describes current problems in data science and Big Data. Key topics are data classification, Graph Cut, the Laplacian Matrix, Google Page Rank, efficient algorithms, hardness of problems, different types of big data, geometric data structures, topological data processing, and various learning methods.  For unsolved problems such as incomplete data relation and reconstruction, the book includes possible solutions and both statistical and computational methods for data analysis. Initial chapters focus on exploring the properties of incomplete data sets and partial-connectedness among data points or data sets. Discussions also cover the completion problem of Netflix matrix; machine learning method on massive data sets; image segmentation and video search. This book introduces software tools for data science and Big Data such MapReduce, Hadoop, and Spark.

This book contains three parts.  The first part explores the fundamental tools of data science. It includes basic graph theoretical methods, statistical and AI methods for massive data sets. In second part, chapters focus on the procedural treatment of data science problems including machine learning methods, mathematical image and video processing, topological data analysis, and statistical methods. The final section provides case studies on special topics in variational learning, manifold learning, business and financial data rec

overy, geometric search, and computing models.

Mathematical Problems in Data Science is a valuable resource for researchers and professionals working in data science, information systems and networks.  Advanced-level students studying computer science, electrical engineering and mathematics will also find the content helpful.

Inhalt

Introduction: Data Science and BigData Computing.- Overview of Basic Methods for Data Science.- Relationship and Connectivity of Incomplete Data Collection.- Machine Learning for Data Science: Mathematical or Computational.- Images, Videos, and BigData.- Topological Data Analysis.- Monte Carlo Methods and their Applications in Big Data Analysis.- Feature Extraction via Vector Bundle Learning.- Curve Interpolation and Financial Curve Construction.- Advanced Methods in Variational Learning: Segmentation with Intensity Inhomogeneity.- An On-line Strategy of Groups Evacuation From a Convex Region in the Plane.- A New Computational Model of Bigdata.

Informationen zu E-Books

„E-Book“ steht für digitales Buch. Um diese Art von Büchern lesen zu können wird entweder eine spezielle Software für Computer, Tablets und Smartphones oder ein E-Book Reader benötigt. Da viele verschiedene Formate (Dateien) für E-Books existieren, gilt es dabei, einiges zu beachten.
Von uns werden digitale Bücher in drei Formaten ausgeliefert. Die Formate sind EPUB mit DRM (Digital Rights Management), EPUB ohne DRM und PDF. Bei den Formaten PDF und EPUB ohne DRM müssen Sie lediglich prüfen, ob Ihr E-Book Reader kompatibel ist. Wenn ein Format mit DRM genutzt wird, besteht zusätzlich die Notwendigkeit, dass Sie einen kostenlosen Adobe® Digital Editions Account besitzen. Wenn Sie ein E-Book, das Adobe® Digital Editions benötigt herunterladen, erhalten Sie eine ASCM-Datei, die zu Digital Editions hinzugefügt und mit Ihrem Account verknüpft werden muss. Einige E-Book Reader (zum Beispiel PocketBook Touch) unterstützen auch das direkte Eingeben der Login-Daten des Adobe Accounts – somit können diese ASCM-Dateien direkt auf das betreffende Gerät kopiert werden.
Da E-Books nur für eine begrenzte Zeit – in der Regel 6 Monate – herunterladbar sind, sollten Sie stets eine Sicherheitskopie auf einem Dauerspeicher (Festplatte, USB-Stick oder CD) vorsehen. Auch ist die Menge der Downloads auf maximal 5 begrenzt.

Weitere Artikel vom Autor "Jiang, Bo/Chen, Li M/Su, Zhixun"

Alle Artikel anzeigen