0

Copper Catalysis in Organic Synthesis

eBook

Erschienen am 24.06.2020, 1. Auflage 2020
142,99 €
(inkl. MwSt.)

Download

E-Book Download
Bibliografische Daten
ISBN/EAN: 9783527826421
Sprache: Englisch
Umfang: 504 S., 33.87 MB
E-Book
Format: PDF
DRM: Adobe DRM

Beschreibung

The most current information on growing field of copper catalysis

Copper Catalysis in Organic Synthesis contains an up-to-date overview of the most important reactions in the presence of copper catalysts. The contributors—noted experts on the topic—provide an introduction to the field of copper catalysis, reviewing its development, scope, and limitations, as well as providing descriptions of various homo- and cross-coupling reactions. In addition, information is presented on copper-catalyzed C–H activation, amination, carbonylation, trifluoromethylation, cyanation, and click reactions.

Comprehensive in scope, the book also describes microwave-assisted and multi-component transformations as well as copper-catalyzed reactions in green solvents and continuous flow reactors. The authors highlight the application of copper catalysis in asymmetric synthesis and total synthesis of natural products and heterocycles as well as nanocatalysis. This important book:Examines copper and its use in organic synthesis as a more cost-effective and sustainable for researchers in academia and industryOffers the first up-to-date book to explore copper as a first line catalyst for many organic reactionsPresents the most significant developments in the area, including cross-coupling reactions, C–H activation, asymmetric synthesis, and total synthesis of natural products and heterocyclesContains over 20 contributions from leaders in the field

Written for catalytic chemists, organic chemists, natural products chemists, pharmaceutical chemists, and chemists in industry,Copper Catalysis in Organic Synthesis offers a book on the growing field of copper catalysis, covering cross-coupling reactions, C–H activation, and applications in the total synthesis of natural products.

Autorenportrait

Gopinathan Anilkumar, PhD., is professor of organic chemistry at the School of Chemical Sciences, Mahatma Gandhi University in Kottayam, Kerala, India. His research interests are in the areas of organic synthesis, medicinal chemistry, heterocyclic chemistry and catalysis, particularly on ruthenium-, iron-, zinc-, copper-, manganese-, cobalt- and nickel-catalyzed reactions.

Salim Saranya is a PhD student in the group of Prof. Gopinathan Anilkumar at the School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala, India.

Inhalt

Preface xvii

Abbreviations xix

1 Copper Catalysis: An Introduction1
Salim Saranya and Gopinathan Anilkumar

References 4

2 Cu-Catalyst in Reactions Involving Pyridinium and Indolizinium Moieties7
Bianca Furdui, Andrea V. Dediu (Botezatu), and RodicaM. Dinica

2.1 Cu-Catalyst in Reactions Involving Pyridinium Moieties 7

2.1.1 Introduction 7

2.1.2 Synthesis and Functionalization of Pyridinium Compounds Catalyzed by Copper 7

2.1.3 Green Methods for Pyridine Synthesis 13

2.2 Cu-Catalyst in Reactions Involving Indolizinium Moieties 15

2.2.1 Introduction 15

2.2.2 Synthesis of Indolizinium Compounds Using a Copper Catalyst 15

2.2.3 Cu-Catalyzed Green Synthesis of Indolizine Moieties 19

2.3 Conclusions 21

References 21

3 Copper-Catalyzed Cross-Coupling Reactions of Organoboron Compounds23
Jan Nekvinda and Webster L. Santos

3.1 Introduction 23

3.2 Ring Opening Cross-Coupling Reactions 24

3.3 Coupling Reactions with Atoms Other than Carbon 26

3.3.1 Amines, Amides, and Sulfonamides 27

3.3.2 Nitrones 33

3.3.3 Sulfones 35

3.3.4 Silyls 35

3.3.5 Selanyls 36

3.4 Coupling Reactions Involving Carbon 36

3.4.1 Boronic Acid Esters 36

3.4.2 Boronic Acids 41

3.4.3 Single Electron Mechanism 42

3.5 Conclusion 43

References 43

4 Cu-Catalyzed Homocoupling Reactions51
Ganesh C. Nandi, Sundaresan Ravindra, Cholakkaparambil Irfana Jesin, Parameswaran Sasikumar, and Kokkuvayil V. Radhakrishnan

4.1 Introduction 51

4.2 Synthesis of 1,3-Diynes via Homocoupling Reactions 51

4.2.1 Synthesis of 1,3-Diynes with Homogeneous Cu Catalysis 52

4.2.1.1 Synthesis of Symmetrical 1,3-Diynes with Substrates Other than Terminal Alkynes 54

4.2.2 Synthesis of Symmetrical 1,3-Diynes with Heterogeneous Cu Catalysis 55

4.2.3 Synthesis of Macrocycles Through Intramolecular Coupling of Terminal Alkynes 56

4.3 Cu-Catalyzed Synthesis of Symmetrical Biaryls Through Homocoupling Reactions 57

4.3.1 Homocoupling of Aryl Boronic Acids 58

4.3.1.1 Homogeneous Cu-Catalyzed Homocoupling Reactions 58

4.3.1.2 Heterogeneous Copper-Catalyzed Homocoupling Reactions 58

4.3.2 Synthesis of Symmetrical Biaryls Through CH Activation 59

4.3.3 Homocoupling of Arylstannane/Silane Derivatives 62

4.3.4 Cu-Catalyzed Homocoupling of Aryl Halides for the Synthesis of Biaryls 62

4.3.4.1 Symmetrical Biaryl Formation Using Homogeneous Copper Catalyst 62

4.3.4.2 Biaryl Formation Using Heterogeneous Cu Catalyst 65

4.3.5 Cu-Catalyzed Homocoupling of Aryl Halides for the Formation of Biaryls in Natural Products 66

4.4 Homocoupling of Alkenes 68

4.5 Summary and Conclusions 69

References 69

5 Cu-Catalyzed Organic Reactions in Aqueous Media73
Noel Nebra and Joaquín García-Álvarez

5.1 Introduction 73

5.2 Cu-Catalyzed AzideAlkyne Cycloaddition Reactions (CuAAC) 74

5.2.1 Ligand-Accelerated Cu(I) Catalysts 74

5.2.2 Supported Cu(I) Catalysts 75

5.2.3 Micellar Cu(I) Catalysis 77

5.2.4 Heterogeneous Catalysis: CuNPs 77

5.2.5 Miscellaneous 80

5.3 Cu-Mediated Cross-Coupling Reactions: CC and CHeteroatom Bond Formation 81

5.3.1 The Ullmann Coupling 81

5.3.2 The ChanLamEvans (CEL) Coupling 83

5.3.3 Cu-Catalyzed Cyclization Reactions via Cross-Coupling Events 85

5.3.4 Cu-Catalyzed CH Bond Functionalization Reactions 86

5.4 Cu-Catalyzed Hydroelementation Reactions of Double and Triple CC Bonds 89

5.4.1 Michael-Type Additions: Enone Hydrations Enabled by Cu-Based Metallo-Hydratases 89

5.4.2 Cu-Catalyzed Hydroelementation of ,-Unsaturated Carbonyl Compounds 90

5.4.3 Cu-Catalyzed Hydroelementation of Inactivated CC Multiple Bonds 92

5.5 Miscellaneous 96

5.6 Summary and Conclusions 98

Acknowledgments 98

References 100

6 Cu-Catalyzed Organic Reactions inDeep Eutectic Solvents(DESs)103
Noel Nebra and Joaquín García-Álvarez

6.1 Introduction 103

6.2 Cu-Catalyzed AzideAlkyne Cycloaddition Reactions (CuAAC) inDESs106

6.3 Cu-Catalyzed CC and CN Bond Formations inDESs108

6.3.1 Cu-Catalyzed Sonogashira CC Coupling Using the Eutectic Mixture 1CuCl/1Gly 108

6.3.2 Synthesis of Heterocyclic Compounds via Cu-Catalyzed Cross-Coupling Reactions 110

6.3.3 Cu-Catalyzed CN Bond Formation inDESs110

6.4 Cu-Catalyzed Atom Transfer Radical Polymerization Processes inDESs(SARA and ARGET) 112

6.5 Summary and Conclusions 113

Acknowledgments 114

References 114

7 Microwave-Assisted Cu-Catalyzed Organic Reactions119
Bogdan ¦tefane, Helena Brodnik-?ugelj, Uro¨ Gro¨elj, Jurij Svete, and Franc Po?gan

7.1 Introduction 119

7.2 Ring-Forming Reactions 121

7.2.1 Synthesis of Heterocycles 121

7.2.1.1 Cycloadditions 121

7.2.1.2 Annulation Reactions 123

7.2.1.3 Intramolecular Cyclizations 126

7.2.1.4 Multicomponent Reactions (MCRs) 126

7.2.2 Synthesis of Carbocycles 128

7.3 Cross-Coupling Reactions 130

7.3.1 CarbonCarbon Couplings 130

7.3.2 CarbonHeteroatom Couplings 134

7.3.2.1 CN Couplings 134

7.3.2.2 CChalcogen Couplings 138

7.4 Multicomponent Reactions 141

7.5 Miscellaneous Reactions 144

7.6 Summary and Conclusions 146

Acknowledgments 146

References 146

8 Cu-Catalyzed Asymmetric Synthesis153
Hidetoshi Noda, Naoya Kumagai, and Masakatsu Shibasaki

8.1 Introduction 153

8.1.1 Cu-Catalyzed Asymmetric Synthesis: Scope of This Chapter 153

8.1.2 Structures of Chiral Ligands: Trends of the Last Decade 154

8.2In SituGeneration of Cu Nucleophiles from Unsaturated Hydrocarbons 155

8.2.1 Reductive Aldol Reactions 155

8.2.2 Intramolecular Oxy- and Amidocupration 156

8.2.3 Hydrocupration of Unsaturated Compounds 158

8.2.4 Borylcupuration of Unsaturated Compounds 163

8.3 Generation of Cu Nucleophiles Under Proton Transfer Conditions 165

8.4 Summary and Conclusions 172

References 172

9 Cu-Catalyzed Click Reactions177
Rajagopal Ramkumar and Pazhamalai Anbarasan

9.1 Introduction 177

9.2 Background 178

9.2.1 Huisgens Cycloaddition Reaction 178

9.2.2 Copper(I)-Catalyzed AzideAlkyne Cycloaddition (CuAAC) 178

9.2.3 Mechanistic Study of Copper AzideAlkyne Cycloaddition Reaction 179

9.3 CuAAC for the Synthesis of Substituted 1,2,3-Triazoles 180

9.4 Heterogeneous CuAAC Reactions 188

9.5 Ligand-Stabilized Cu(I)-Catalyzed Click Reaction 191

9.6 Synthesis of Rotaxanes and Catenanes Using CuAAC 196

9.7 Synthesis ofN-Sulfonyl-1,2,3-Triazoles and Their Applications 198

9.8 CuAAC and Asymmetric Synthesis 198

9.9 CuAAC for Synthesis of Biologically Active Molecules 202

9.10 Summary 204

References 204

10 Cu-Catalyzed Multicomponent Reactions209
Thachapully D. Suja and Rajeev S. Menon

10.1 Introduction 209

10.2 Cu-Catalyzed MCRs of Alkynes 209

10.2.1 Cu-Catalyzed Multicomponent AlkyneAzide Cycloadditions 210

10.2.1.1 CuAAC Reactions Initiated by Azide Generation 210

10.2.1.2 CuAAC Reactions Initiated by Alkyne Generation 214

10.2.1.3 Other Multicomponent CuAAC Reactions 214

10.2.2 Cu-Catalyzed Generation and Interception of Ketenimines from Alkynes and Azides 216

10.2.3 Cu-Catalyzed Aldehyde, Alkyne, and Amine (A3) Coupling 221

10.2.3.1 A3-Coupling ReactionsThat Afford Propargyl Amine Derivatives 222

10.2.3.2 Variation of the Reaction Components in A3-Coupling 224

10.2.3.3 Asymmetric A3 (AA3)-Coupling Reactions 226

10.2.3.4 Synthetic Applications of Cu-Catalyzed A3-Coupling Reactions 227

10.3 Other Cu-Catalyzed Multicomponent Reactions 229

10.4 Summary and Conclusions 233

References 233

11 Copper-Catalyzed Aminations239
Nissy A. Harry and Rajenahally V. Jagadeesh

11.1 Introduction 239

11.2 Copper-Catalyzed Amination of Aryl and Alkenyl Electrophiles 240

11.2.1 Ammonia as a Nucleophile 240

11.2.2 Sodium Azide as Nucleophile 241

11.2.3 Amines as Nucleophile 242

11.2.4 Mechanism of Cu-Catalyzed Amination of Aryl/Alkyl Halides 244

11.3 ChanLam Coupling Reaction 244

11.4 Copper-Catalyzed Hydroaminations 246

11.4.1 Hydroamination of Alkenes 247

11.4.2 Hydroamination of Alkynes 250

11.4.3 Hydroamination of Allenes 251

11.5 Copper-Catalyzed CH amination Reactions 251

11.6 Conclusion 254

References 254

12 Cu-Catalyzed Carbonylation Reactions261
Parameswaran Sasikumar, Thoppe S. Priyadarshini, Sanjay Varma, Ganesh C. Nandi, and Kokkuvayil V. Radhakrishnan

12.1 Introduction 261

12.2 Single Carbonylation Reactions 262

12.2.1 Copper-Catalyzed Carbonylative Coupling Reactions 262

12.2.2 Cu-Catalyzed Carboxylation Reaction 268

12.2.3 Cu-Catalyzed Oxidative Carbonylation Reactions 269

12.2.4 Carbonylative Acetylation Reaction 272

12.2.5 Aminocarbonylation Reaction 273

12.2.6 Copper-Catalyzed Oxidative Amidation 275

12.3 Cu-Catalyzed Double Carbonylation Reactions 275

12.4 Summary and Conclusions 278

References 278

13 Ligand-Free, Cu-Catalyzed Reactions279
Muhammad F. Jamali, Sanoop P. Chandrasekharan, and Kishor Mohanan

13.1 Introduction 279

13.2 Heterocycle Synthesis 279

13.2.1 Five-Membered Heterocycles 280

13.2.2 Six-Membered Heterocycles 280

13.2.3 Benzofused Five-Membered Heterocycles Containing One Heteroatom 281

13.2.4 Benzofused Five-Membered Heterocycles Containing Two Heteroatoms 283

13.2.5 Benzofused Five-Membered Heterocycles Containing Three Heteroatoms 284

13.2.6 Benzofused Six-Membered Heterocycles 284

13.2.7 Polycyclic Compounds 286

13.2.8 Spirocyclic Compounds 286

13.3 CarbonHeteroatom Bond Formations 289

13.3.1 CN Bond Formation 289

13.3.2 CO Bond Formation 291

13.3.3 CS Bond Formation 291

13.3.4 CP Bond Formation 295

13.3.5 CB Bond Formation 295

13.3.6 CSe Bond Formation 295

13.4 CH Activation Reactions 297

13.5 Cross-coupling Reactions 299

13.6 AzideAlkyne Cycloaddition Reactions (CuAAC) 301

13.7 Trifluoromethylation Reactions 302

13.8 Cyanation Reactions 303

13.9 Carbonylation Reactions 304

13.10 Conclusion 305

References 305

14 Copper-Catalyzed Decarboxylative Coupling309
Firas El-Hage and Jola Pospech

14.1 Introduction 309

14.2 Copper-Catalyzed Decarboxylation of Benzoic Acids 309

14.3 Copper-Catalyzed Decarboxylation of Alkenyl Carboxylic Acids 315

14.4 Copper-Catalyzed Decarboxylation of Alkynyl Carboxylic Acids 316

14.5 Copper-Catalyzed Decarboxylation of Alkyl Carboxylic Acids 320

14.6 Summary and Conclusions 325

References 326

15 Copper-Catalyzed CH Activation329
Xun-Xiang Guo

15.1 Introduction 329

15.2 CarbonCarbon Bond Formation via Cu-Catalyzed CH Activation 329

15.2.1 Cu-Catalyzed C(sp2)H Activation 329

15.2.2 Cu-Catalyzed C(sp3)H Activation 332

15.3 CarbonHeteroatom Bond Formation via Cu-Catalyzed CH Activation 334

15.3.1 CN Bond Formation 334

15.3.2 CO Bond Formation 339

15.3.3 CX Bond Formation 341

15.3.4 CP Bond Formation 345

15.3.5 CS Bond Formation 346

15.4 Conclusion 347

References 347

16 Aerobic Cu-Catalyzed Organic Reactions349
Ahmad A. Almasalma and Esteban Mejía

16.1 Introduction 349

16.2 CC Bond Formation Reactions 351

16.2.1 Cross-dehydrogenative Couplings Under Thermal Conditions 352

16.2.2 Cross-dehydrogenative Couplings Under Photochemical Conditions 354

16.3 Carbonyl Synthesis via Oxidation of Alcohols 357

16.3.1 Copper-Only Biomimetic Catalyst Systems 358

16.3.2 Cu/Nitroxyl Dual Systems 360

16.4 Summary and Conclusions 362

References 363

17 Copper-Catalyzed Trifluoromethylation Reactions367
Dzmitry G. Kananovich

17.1 Introduction 367

17.2 Trifluoromethylation of Arenes and Heteroarenes (C(sp2)CF3 Bond Formation) 370

17.3 Trifluoromethylation of Alkenes and Alkynes 374

17.4 Trifluoromethylation of Aliphatic Precursors (C(sp3)CF3 Bond Formation) 378

17.4.1 Transformations via Functional Group Interconversions 378

17.4.2 Direct C(sp3)H Trifluoromethylation 382

17.4.3 Ring-opening Trifluoromethylation 386

17.5 Copper-Mediated Formation of CF3Heteroatom Bonds 388

17.6 Summary and Conclusions 388

References 389

18 Cu-Catalyzed Reactions for CarbonHeteroatom Bond Formations395
Govindasamy Sekar, Subramani Sangeetha, Anuradha Nandy, and Rajib Saha

18.1 Introduction 395

18.2 Cu-Catalyzed Reactions for CarbonNitrogen Bond Formations 395

18.2.1 Coupling Reactions with Ammonia and its Surrogates 396

18.2.2 Coupling Reactions with Amines 396

18.2.3 Coupling Reactions with Amides, Lactams, and Carbamates 398

18.2.4 Coupling Reactions with Protected Hydrazines and Hydroxylamines 400

18.2.5 Coupling Reactions with Guanidines 400

18.2.6 Coupling Reactions with N-Heterocycles 401

18.3 Cu-Catalyzed Reactions for CarbonOxygen Bond Formations 401

18.3.1 Mechanism and Presence of Cu(I) Intermediate in Ullmann Ether Synthesis 402

18.3.2 Role of Ligands in Copper-Catalyzed Ether Synthesis 403

18.3.3 Copper-Catalyzed CO Bond Formation for Synthesizing Phenols 404

18.3.4 Copper-Catalyzed CH Functionalization for CO Bond Formation 405

18.3.5 Copper-Catalyzed Synthesis of Oxygen Heterocycles 405

18.3.6 Selectivity of Copper-Catalyzed CO and CN Bond Formation 406

18.4 Cu-Catalyzed Reactions for CarbonSulfur Bond Formations 407

18.5 Cu-Catalyzed Reactions for CarbonSelenium and CarbonTellurium Bond Formations 413

18.6 Cu-Catalyzed Reactions for CarbonPhosphorous Bond Formations 414

18.7 Cu-Catalyzed Reactions for CarbonSilicon Bond Formations 415

18.8 Cu-Catalyzed Reactions for CarbonHalogen Bond Formations 415

18.9 Conclusions 416

References 416

19 Cu-Assisted Cyanation Reactions423
Sumanta Garai and Ganesh A. Thakur

19.1 Introduction 423

19.2 Cyanation Reaction Using CN-Containing Source 423

19.2.1 Metallic Bound CN-Source 423

19.2.1.1 Metal Cyanide 423

19.2.1.2 Potassium Ferrocyanide [K3Fe(CN)6] 427

19.2.2 Nonmetallic CN-Source 427

19.2.2.1 Acetone Cyanohydrin 427

19.2.2.2 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) 428

19.2.2.3 2,2-Azobisisobutyronitrile (AIBN) 429

19.2.2.4 Benzyl Cyanide 429

19.2.2.5 Acetonitrile 432

19.2.2.6 Malononitrile 435

19.2.2.7 Cyanogen Iodide 436

19.2.2.8 -Cyanoacetate 436

19.3 Cyanation Reaction Using Non-CN-Containing Source 437

19.3.1N,N-Dimethylformamide (DMF) 437

19.3.2 Ammonium Iodide (NH4I) andN,N-Dimethylformamide (DMF) 439

19.3.3 Nitromethane 441

Acknowledgments 441

References 441

20 Application of Cu-Mediated Reactions in the Synthesis of Natural Products443
Anas Ansari and Ramesh Ramapanicker

20.1 Introduction 443

20.2 Classification 443

20.3 Total Synthesis Employing Cu-Catalyzed CC Coupling Reactions 445

20.3.1 (+)-Nocardioazine B 445

20.3.2 ()-Rhazinilam 447

20.3.3 Isohericenone and Erinacerin A 447

20.3.4 (+)-Piperarborenine B 449

20.3.5 Macrocarpines D and E 450

20.4 Total Synthesis Employing Cu-Catalyzed CN Coupling Reactions 454

20.4.1 ()-Aspergilazine A 454

20.4.2 ()-Psychotriasine 454

20.4.3 ()-Indolactam V 455

20.4.4 ()-Palmyrolide A 458

20.5 Total Synthesis Employing Cu-Catalyzed CO Coupling Reactions 458

20.5.1 (±})-Untenone A 458

20.5.2 Coumestrol and Aureol 460

20.6 Total Synthesis Employing Cu-Catalyzed Domino Reactions 463

20.6.1 (±})-Sacidumlignan D 463

20.7 Conclusion 463

References 465

Index 469

Informationen zu E-Books

„E-Book“ steht für digitales Buch. Um diese Art von Büchern lesen zu können wird entweder eine spezielle Software für Computer, Tablets und Smartphones oder ein E-Book Reader benötigt. Da viele verschiedene Formate (Dateien) für E-Books existieren, gilt es dabei, einiges zu beachten.
Von uns werden digitale Bücher in drei Formaten ausgeliefert. Die Formate sind EPUB mit DRM (Digital Rights Management), EPUB ohne DRM und PDF. Bei den Formaten PDF und EPUB ohne DRM müssen Sie lediglich prüfen, ob Ihr E-Book Reader kompatibel ist. Wenn ein Format mit DRM genutzt wird, besteht zusätzlich die Notwendigkeit, dass Sie einen kostenlosen Adobe® Digital Editions Account besitzen. Wenn Sie ein E-Book, das Adobe® Digital Editions benötigt herunterladen, erhalten Sie eine ASCM-Datei, die zu Digital Editions hinzugefügt und mit Ihrem Account verknüpft werden muss. Einige E-Book Reader (zum Beispiel PocketBook Touch) unterstützen auch das direkte Eingeben der Login-Daten des Adobe Accounts – somit können diese ASCM-Dateien direkt auf das betreffende Gerät kopiert werden.
Da E-Books nur für eine begrenzte Zeit – in der Regel 6 Monate – herunterladbar sind, sollten Sie stets eine Sicherheitskopie auf einem Dauerspeicher (Festplatte, USB-Stick oder CD) vorsehen. Auch ist die Menge der Downloads auf maximal 5 begrenzt.

Weitere Artikel vom Autor "Salim Saranya/Gopinathan Anilkumar"

Alle Artikel anzeigen