Bibliografische Daten
ISBN/EAN: 9783960090939
Sprache: Deutsch
Umfang: XIV, 200 S., komplett in Farbe
Format (T/L/B): 1.5 x 24 x 16.5 cm
Einband: kartoniertes Buch
Beschreibung
Die Merkmalskonstruktion, auch Feature Engineering genannt, ist ein entscheidender Arbeitsschritt bei der Datenaufbereitung für das maschinelle Lernen, der die Leistung der Modelle stark beeinflusst. In diesem praxisnahen Buch lernen Sie Techniken, um Merkmale - numerische Repräsentationen eines bestimmten Aspekts von Rohdaten - zu gewinnen und mit maschinellen Lernmodellen nutzbar zu machen. Jedes Kapitel führt Sie durch eine spezifische Aufgabe der Datenanalyse wie etwa die Darstellung von Text- oder Bilddaten. Diese Beispiele veranschaulichen die wichtigsten Prinzipien der Merkmalskonstruktion. Statt diese Prinzipien nur zu beschreiben, legen die Autorinnen Alice Zheng und Amanda Casari im gesamten Buch den Schwerpunkt auf die praktische Anwendung mit Übungen. Das Schlusskapitel vertieft das Gelernte, indem es verschiedene Techniken der Merkmalskonstruktion auf einen realen, strukturierten Datensatz anwendet. In den Beispielen werden Python-Pakete wie numpy, Pandas, scikit-learn und Matplotlib verwendet. Aus dem Inhalt: Merkmalskonstruktion an numerischen Daten: Filter, Klasseneinteilung, Skalierung, logarithmische und PotenzTransformationen Techniken für natürlichen Text: BagofWordsModelle, nGramme und Phrasenerkennung Frequenzfilterung und Merkmalsskalierung zum Entfernen aussageloser Merkmale Kodierungstechniken für Kategorievariablen, darunter MerkmalsHashing und Klassenzählung Modellgesteuerte Merkmalskonstruktion mit der Hauptkomponentenanalyse Das Konzept der Modellkombination mit dem kMeansAlgorithmus als Technik zur Merkmalserzeugung Gewinnung von Bildmerkmalen anhand manueller und DeepLearningTechniken "Datenaufbereitung und Merkmalskonstruktion haben sich in vielen Anwendungen als die wichtigsten Einflussfaktoren für die Leistungsfähigkeit der Modelle erwiesen. Ich freue mich, dass es endlich ein Buch gibt, das sich nur diesem Thema widmet. Alice und Amanda erklären sehr detailliert die Feinheiten vieler verbreiteter Techniken." Andreas C. MüllerDozent für Machine Learning an der Universität von Columbia und Kernentwickler bei scikitlearn
Produktsicherheitsverordnung
Hersteller:
dpunkt.verlag GmbH
Vanessa Niethammer
hallo@dpunkt.de
Wieblinger Weg 17
DE 69123 Heidelberg
Autorenportrait
Alice Zheng ist technische Leiterin für angewandtes Machine Learning und beschäftigt sich mit Algorithmen und Plattformentwicklung. Derzeit ist sie Forschungsmanagerin bei Amazon Advertisement. Zuvor war sie bei GraphLab/Dato/Turi mit der Werkzeugentwicklung und der Weiterbildung von Anwendern betraut und forschte über maschinelles Lernen bei Microsoft Research. Sie besitzt einen Doktortitel für Elektrotechnik und Informatik sowie einen Bachelor-Abschluss in Informatik und Mathematik von der University of California, Berkeley.