0

The Science Teacher's Toolbox

eBook - Hundreds of Practical Ideas to Support Your Students, The Teacher's Toolbox Series

Erschienen am 09.04.2020, 1. Auflage 2020
26,99 €
(inkl. MwSt.)

Download

E-Book Download
Bibliografische Daten
ISBN/EAN: 9781119570172
Sprache: Englisch
Umfang: 592 S., 12.82 MB
E-Book
Format: PDF
DRM: Adobe DRM

Beschreibung

A winning educational formula of engaging lessons and powerful strategies for science teachers in numerous classroom settings

TheTeachers Toolbox series is an innovative, research-based resource providing teachers with instructional strategies for students of all levels and abilities. Each book in the collection focuses on a specific content area. Clear, concise guidance enables teachers to quickly integrate low-prep, high-value lessons and strategies in their middle school and high school classrooms. Every strategy follows a practical, how-to format established by the series editors.

The Science Teacher's Toolbox is a classroom-tested resource offering hundreds of accessible, student-friendly lessons and strategies that can be implemented in a variety of educational settings. Concise chapters fully explain the research basis, necessary technology, Next Generation Science Standards correlation, and implementation of each lesson and strategy.

Favoring a hands-on approach, this bookprovides step-by-step instructions that help teachers to apply their new skills and knowledge in their classrooms immediately. Lessons cover topics such as setting up labs, conducting experiments, using graphs, analyzing data, writing lab reports, incorporating technology, assessing student learning, teaching all-ability students, and much more. This book enables science teachers to:

Understand how each strategy works in the classroom and avoid common mistakesPromote culturally responsive classroomsActivate and enhance prior knowledgeBring fresh and engaging activities into the classroom and the science lab

Written by respected authors and educators,The Science Teacher's Toolbox: Hundreds of Practical Ideas to Support Your Studentsis an invaluable aid for upper elementary, middle school, and high school science educators as well those in teacher education programs and staff development professionals.

Autorenportrait

TARA C. DALE is a National Board Certified Teacher (NBCT), currently teaching high school science and working as an instructional coach. She has taught middle school Science and Social Studies as well as Biology, Ecology, Earth Science, AP Psychology, and AP Environmental Science. She sits on the Board of Directors for the Arizona NBCT Network and is on the Superintendent Teacher Advisor Team for Maricopa County, Arizona. Tara has facilitated professional development classes and presented at conferences throughout the United States.

MANDI S. WHITE is currently an academic and behavior specialist at Kyrene del Pueblo Middle School in Chandler, Arizona. She has worked as a middle school special education resource teacher and has taught English, Social Studies, and Math. She holds Master's Degrees in Special Education and Educational Leadership, as well as a graduate certificate in Positive Behavior Support. Also, she has helped facilitate professional development for educators in Arizona.

LARRY FERLAZZO teaches English, Social Studies, and International Baccalaureate classes to English language learners and others at Luther Burbank High School in Sacramento, California. He is the author and co-author of nine books, includingThe ELL Teacher's Toolbox, and writes a weekly teacher advice column forEducation Week Teacher. He is the recipient of the Ford Foundation's Leadership for a Changing World Award and winner of the International Reading Association Award for Technology and Reading.

KATIE HULL SYPNIESKI has taught English language learners and others at the secondary level for over twenty years. She teaches middle school English Language Arts and Social Studies at Fern Bacon Middle School in Sacramento, California, and leads professional development for educators as a consultant with the Area 3 Writing Project at the University of California, Davis. She is co-author of several books, includingThe ELL Teacher's Toolbox.

Inhalt

About the Authors xxv

About the Editors of the Toolbox Series xxvii

Acknowledgments xxix

Letter from the Editors xxxi

Introduction xxxiii

I Science Labs 1

1. Strategies for Teaching Lab Safety 3

What is It? 3

Why We Like It 3

Supporting Research 3

Skills for Intentional Scholars/NGSS Standards 4

Application 4

Student Handouts and Examples 7

What Could Go Wrong? 7

Technology Connections 8

Attribution 8

Figures 8

Figure 1.1 Science Safety Contract English (Student Handout) 8

Figure 1.2 Science Safety Contract Spanish (Student Handout) 11

Figure 1.3 Identifying Broken Lab Safety Rules (Student Handout) 13

Figure 1.4 Identifying Broken Lab Safety RulesAnswer Key 14

Figure 1.5 Science Lab Safety Quiz (Student Handout) 15

2. Strategies for Teaching Lab Procedures 17

What is It? 17

Why We Like It 17

Supporting Research 18

Skills for Intentional Scholars/NGSS Standards 18

Application 18

Student Handouts and Examples 29

What Could Go Wrong? 29

Technology Connections 30

Attributions 30

Figures 31

Figure 2.1 Folder ActivityOutside and InsideThermal Power Plant  31

3. Strategies for Teaching the Scientific Method and Its Components 33

What is It? 33

Why We Like It 34

Supporting Research 34

Skills for Intentional Scholars/NGSS Connections 35

Application 35

Student Handouts and Examples 50

What Could Go Wrong? 50

Technology Connections 52

Figures 54

Figure 3.1 Student Research Organizer (Student Handout) 54

Figure 3.2 Identifying Independent and Dependent Variables (Student Handout) 55

Figure 3.3 Identifying Independent and Dependent VariablesAnswer Key 58

Figure 3.4 How to Write a Hypothesis (Student Handout) 61

Figure 3.5 How to Write a HypothesisAnswer Key 64

Figure 3.6 Student Materials List (Student Handout) 67

Figure 3.7 Finding Controls and Making Data Tables (Student Handout) 68

Figure 3.8 Finding Controls and Making Data TablesAnswer Key 70

Figure 3.9 Example and ChecklistMaking Graphs (Student Handout) 73

Figure 3.10 Discussion of Results (Student Handout) 74

Figure 3.11 Conclusion (Student Handout) 76

Figure 3.12 Discussion of Results and Conclusion Modified Version (Student Handout) 78

Figure 3.13 Scientific Method Pretest Stations 80

Figure 3.14 Scientific Method PretestStudent Answer Sheet (Student Handout) 82

Figure 3.15 Scientific Method PretestAnswer Key 84

4. Strategies for Teaching the Inquiry Process 87

What is It? 87

Why We Like It 88

Supporting Research 89

Skills for Intentional Scholars/NGSS Connections 89

Application 89

Student Handouts and Examples 99

What Could Go Wrong? 99

Technology Connections 100

Attributions 100

Figures 102

Figure 4.1 Quantitative vs. Qualitative Examples (Student Handout) 102

Figure 4.2 Quantitative vs. Qualitative ExamplesAnswer Key 103

Figure 4.3 Observing with Quantitative and Qualitative Data (Student Handout) 104

Figure 4.4 Observing with Quantitative and Qualitative DataAnswer Key 105

Figure 4.5 Owl Pellet Step-by-Step Procedures and Questions (Student Handout) 106

Figure 4.6 Question Stems for Observers (Student Handout) 108

Figure 4.7 Discussion of Results and Conclusion (Student Handout) 109

Figure 4.8 Using the Inquiry Process (Student Handout) 111

Figure 4.9 Checklist for Verifying Online Resources (Student Handout) 113

5. Strategies for Using Project-Based Learning 115

What is It? 115

Why We Like It 115

Supporting Research 116

Skills for Intentional Scholars/NGSS Connections 116

Application 117

Student Handouts and Examples 126

What Could Go Wrong? 127

Technology Connections 127

Attributions 128

Figures 128

Figure 5.1 Example of Project-Based Learning Task ManagerCarbon Footprint of a Restaurant (Student Handout) 128

Figure 5.2 Blank Project-Based Learning Task Manager (Student Handout) 129

Figure 5.3 Example of PBL Scoring GuideRestaurant Project (Student Handout) 130

Figure 5.4 Example of PBL RubricLocation of the Next Wind Farm in the United States (Student Handout) 131

Figure 5.5 Peer Presentation Evaluation (Student Handout) 132

6. Strategies for Teaching the Engineering Process 133

What is It? 133

Why We Like It 135

Supporting Research 135

Skills for Intentional Scholars/NGSS Connections 136

Application 136

Student Handouts and Examples 149

What Could Go Wrong? 149

Technology Connections 150

Attributions 152

Figures 153

Figure 6.1 Student Examples of Mousetrap Catapult Designs 153

Figure 6.2 Mousetrap Catapult Lab Worksheet (Student Handout) 154

Figure 6.3 Mousetrap Catapult Picture 155

Figure 6.4 Mousetrap Catapult Rubric (Student Handout) 156

Figure 6.5 Mousetrap Catapult Sentence Frames (Student Handout) 157

II Integration of ELA, Mathematics, and the Arts 159

7. Strategies for Teaching Vocabulary 161

What is It? 161

Why We Like It 161

Supporting Research 162

Skills for Intentional Scholars/NGSS Standards 162

Application 162

Student Handouts and Examples 170

What Could Go Wrong? 171

Technology Connections 171

Attributions 171

Figures 172

Figure 7.1 The Language of Introductory Ecology (Student Handout) 172

Figure 7.2 Vocabulary Definition Worksheet (Student Handout) 174

Figure 7.3 Word Wall Challenge Rubric (Student Handout) 175

Figure 7.4 Word Wall Examples (Student Examples) 176

Figure 7.5 Limiting Factors: Interactive Fast Facts (Student Handout) 177

Figure 7.6 Limiting Factors: Interactive Fast FactsAnswer Key 179

8. Strategies for Teaching Reading Comprehension 181

What is It? 181

Why We Like It 181

Supporting Research 181

Skills for Intentional Scholars/NGSS Standards 182

Application 182

Student Handouts and Examples 192

What Could Go Wrong? 193

Technology Connections 193

Attributions 193

Figures 194

Figure 8.1 Annotations 194

Figure 8.2 Annotations Model Think Aloud Example (Teacher Model) 194

Figure 8.3 Example of a Text-Dependent Question and Answer (Student Example) 195

Figure 8.4 Photochemical and Industrial Smog Venn Diagram (Student Example) 195

Figure 8.5 Cultural Eutrophication Cause and Effect (Teacher Model) 196

Figure 8.6 Water Cycle Concept Map (Student Example) 197

Figure 8.7 Carbon Cycle Story (student handout) 198

Figure 8.8 Example of the Carbon Cycle (Student Example) 199

Figure 8.9 Hints for Drawing the Atmospheric LayersHigh School (Student Handout) 200

Figure 8.10 Drawing the Atmospheric LayersElementary and Junior High School 201

Figure 8.11 Drawing the Atmospheric LayersAnswer Key 202

Figure 8.12 4 × 4 (Student Example) 203

Figure 8.13 Jigsaw Directions 203

9. Strategies for Teaching Writing 205

What is It? 205

Why We Like It 205

Supporting Research 206

Skills for Intentional Scholars/NGSS Connections 206

Application 206

Student Handouts and Examples 220

What Could Go Wrong? 220

Technology Connections 221

Attributions 222

Figures 223

Figure 9.1 Severe Weather Book Project Research (Student Handout) 223

Figure 9.2 Severe Weather Book Project Scoring Guide (Student Handout) 224

Figure 9.3 Severe Weather Book Project Research Example 225

Figure 9.4 Plot Map Outline (Student Handout) 226

Figure 9.5 Severe Weather Book Plot Map Example 227

Figure 9.6 Comic Strip PSA Checklist (Student Handout) 228

Figure 9.7 Chicken Pox PSA Comic Strip (Student Example) 230

Figure 9.8 Asthma PSA Comic Strip (Student Example) 231

Figure 9.9 Ecology Essential Questions Argument Essay (Student Handout) 233

Figure 9.10 Argument Essay Organizer (Student Handout) 235

Figure 9.11 Ecology Example Argument Essay Organizer 236

Figure 9.12 Argument Essay Peer Editing Checklist (Student Handout) 237

10. Strategies for Discussions 239

What is It? 239

Why We Like It 239

Supporting Research 239

Skills for Intentional Scholars/NGSS Connections 240

Application 240

Student Handouts and Examples 251

What Could Go Wrong? 251

Technology Connections 253

Figures 254

Figure 10.1 Discussion Ground Rules (Teacher Poster) 254

Figure 10.2 Group Discussion Ratings Scale 255

Figure 10.3 Socratic Seminar Participation Checklist (Student Handout) 256

11. Strategies for Teaching Math 257

What is It? 257

Why We Like It 258

Supporting Research 258

Skills for Intentional Scholars/NGSS Connections 259

Application 259

Student Handouts and Examples 282

What Could Go Wrong? 283

Technology Connections 284

Figures 285

Figure 11.1 Bar Graph Example for Teaching Graphing to Fourth Grade Students (Student Handout) 285

Figure 11.2 Line Graph Example for Teaching Graphing to Fifth Grade and Beyond (Student Handout) 287

Figure 11.3 Example of Graphing Pretest (Student Handout) 289

Figure 11.4 Example of Graphing PretestAnswer Key 290

Figure 11.5 Which Type of Graph Should I Use? (Student Handout) 291

Figure 11.6 Which Type of Graph Should I Use?Answer Key 292

Figure 11.7 Temperature vs. Number of Escherichia coli Colonies 294

Figure 11.8 Year vs. Number of Deer and Wolves 295

Figure 11.9 Wildlife Strike Data Analysis and Interpretation (Student Handout) 295

Figure 11.10 Wildlife Strike Data Analysis and InterpretationAnswer Key 297

Figure 11.11 Dimensional Analysis Practice (Student Handout) 299

Figure 11.12 Dimensional Analysis PracticeAnswer Key 301

Figure 11.13 Practice Measuring Your Friends and Their Things (Student Handout) 303

Figure 11.14 Practice Measuring Your Friends and Their ThingsAnswer Key 305

Figure 11.15 Metric System Ladder 307

Figure 11.16 Converting Within the Metric System (Student Handout) 308

Figure 11.17 Metric System Ladder and Abbreviations 309

Figure 11.18 Converting Within the Metric SystemAnswer Key 310

Figure 11.19 Metric System Measuring Challenge (Student Handout) 313

Figure 11.20 Example of 10 Items to be Measured 314

Figure 11.21 Metric System Measuring ChallengeAnswer Key 315

Figure 11.22 Metric and Imperial System Internet Search Lab (Student Handout) 317

Figure 11.23 Metric and Imperial System Internet Search LabAnswer Key 320

Figure 11.24 ExcelSelecting All Cells in a Spreadsheet 323

Figure 11.25 ExcelPop-up Box 323

Figure 11.26 ExcelRows vs. Columns 323

Figure 11.27 Celebrating Pi Day in the Sky (Student Handout) 324

Figure 11.28 ExcelCalculating Radius 325

Figure 11.29 ExcelScreenshots of Before and After Cell Fix 325

Figure 11.30 ExcelScreenshot of the Formula Bar 325

Figure 11.31 ExcelThe Suns Surface Area 325

Figure 11.32 Celebrating Pi Day in the SkyAnswer Key 326

Figure 11.33 Making Graphs in Excel (Student Handout) 327

Figure 11.34 ExcelGraph for Celebrating Pi Day in the Sky 329

12. Strategies for Incorporating the Arts and Kinesthetic Movement 331

What is It? 331

Why We Like It 331

Supporting Research 331

Skills for Intentional Scholars/NGSS Connections 332

Application 332

Student Handouts and Examples 353

What Could Go Wrong? 353

Technology Connections 354

Attributions 355

Figures 356

Figure 12.1 Engineering Process: A Case Study in Inventions (Student Handout) 356

Figure 12.2 Rewriting a Song (Student Handout) 357

Figure 12.3 Example of the First Rewritten Stanza for Twinkle Twinkle Little Star 359

Figure 12.4 Rubric for Cell and Germ Theories Skit (Student Handout) 360

Figure 12.5 Timeline Graphic Organizer for the Cell and Germ Theories (Student Handout) 361

Figure 12.6 Timeline Graphic Organizer for the Cell and Germ TheoriesAnswer Key 362

Figure 12.7 Directions and Scoring Guide for Rube Goldberg Cartoon (Student Handout) 363

Figure 12.8 Picture of a Students Constructed Rube Goldberg Machine 365

Figure 12.9 Dams! are They Constructive or Destructive? (Student Handout) 366

Figure 12.10 Meiosis vs. Mitosis Review (Student Handout) 368

III Additional Resources 371

13. Strategies for Activating Prior Knowledge 373

What is It? 373

Why We Like It 373

Supporting Research 373

Skills for Intentional Scholars/NGSS Connections 374

Application 374

Student Handouts and Examples 386

What Could Go Wrong? 386

Technology Connections 387

Attributions 387

Figures 388

Figure 13.1 KWL Chart ExampleStates of Matter 388

Figure 13.2 Astronomy Anticipation Guide (Student Handout) 389

Figure 13.3 Blind Kahoot! Nervous System Notes (Student Handout) 390

Figure 13.4 Blind Kahoot! Teacher NotesNervous System 391

Figure 13.5 Altitude Pretest for Misconceptions (Student Handout) 392

Figure 13.6 Climate Change Pretest for Misconceptions (Student Handout) 393

14. Strategies for Cultural Responsiveness 395

What is It? 395

Why We Like It 396

Supporting Research 396

Skills for Intentional Scholars/NGSS Connections 397

Application 397

Student Handouts and Examples 415

What Could Go Wrong? 415

Technology Connections 415

Attributions 417

Figures 418

Figure 14.1 All About Me! Form (Student Handout) 418

Figure 14.2 First Day of School Student Survey (Student Handout) 419

Figure 14.3 High School Student Survey (Student Handout) 420

Figure 14.4 Contributors to Science (Student Handout) 421

Figure 14.5 13 Culturally Responsive Teaching Ideas 422

15. Strategies for the Beginning and Ending of Class 423

What is it?.423

Why We Like It 423

Supporting Research 424

Skills for Intentional Scholars/NGSS Connections 424

Application 424

Student Handouts and Examples 433

What Could Go Wrong? 433

Technology Connections 433

Figures 434

Figure 15.1 is Water Wet? 434

Figure 15.2 Reviewing Previous Material 434

16. Strategies for Reviewing Content 435

What is It? 435

Why We Like It 435

Supporting Research 436

Skills for Intentional Scholars/NGSS Connections 436

Application 436

Student Handouts and Examples 448

What Could Go Wrong? 448

Technology Connections 449

Figures 450

Figure 16.1 Blank BINGO Card (Student Handout) 450

Figure 16.2 are the Winners Losers? Game Cards 451

17. Strategies for Assessing Student Learning 453

What is It?.453

Why We Like It 454

Supporting Research 455

Skills for Intentional Scholars/NGSS Connections 455

Application 456

Student Handouts and Examples 479

What Could Go Wrong? 479

Technology Connections 480

Attributions 481

Figures 482

Figure 17.1 Final Day Cool Down Activity 482

Figure 17.2 Example Scale 482

Figure 17.3 Example of a Units First Practice Test 483

Figure 17.4 Reflecting on My LearningBlank (Student Handout) 484

Figure 17.5 Reflecting on My LearningCompleted Example 486

Figure 17.6 Toxicology Unit Thinking Test (Student Handout) 487

Figure 17.7 Toxicology Unit Thinking TestAnswer Key 490

Figure 17.8 Student-Choice Performance-Based Assessment (Student Handout) 493

Figure 17.9 Cell City ModelsStudent Examples 494

Figure 17.10 Checklist for Cell City Models (Student Handout) 497

Figure 17.11 Toxicology Unit Thinking Test Modified (Student Handout) 498

18. Strategies for Co-Teaching 501

What is It? 501

Why We Like It 501

Supporting Research 502

Skills for Intentional Scholars/NGSS Connections 502

Application 502

What Could Go Wrong? 508

Technology Connections 508

References 509

Index 531

Informationen zu E-Books

„E-Book“ steht für digitales Buch. Um diese Art von Büchern lesen zu können wird entweder eine spezielle Software für Computer, Tablets und Smartphones oder ein E-Book Reader benötigt. Da viele verschiedene Formate (Dateien) für E-Books existieren, gilt es dabei, einiges zu beachten.
Von uns werden digitale Bücher in drei Formaten ausgeliefert. Die Formate sind EPUB mit DRM (Digital Rights Management), EPUB ohne DRM und PDF. Bei den Formaten PDF und EPUB ohne DRM müssen Sie lediglich prüfen, ob Ihr E-Book Reader kompatibel ist. Wenn ein Format mit DRM genutzt wird, besteht zusätzlich die Notwendigkeit, dass Sie einen kostenlosen Adobe® Digital Editions Account besitzen. Wenn Sie ein E-Book, das Adobe® Digital Editions benötigt herunterladen, erhalten Sie eine ASCM-Datei, die zu Digital Editions hinzugefügt und mit Ihrem Account verknüpft werden muss. Einige E-Book Reader (zum Beispiel PocketBook Touch) unterstützen auch das direkte Eingeben der Login-Daten des Adobe Accounts – somit können diese ASCM-Dateien direkt auf das betreffende Gerät kopiert werden.
Da E-Books nur für eine begrenzte Zeit – in der Regel 6 Monate – herunterladbar sind, sollten Sie stets eine Sicherheitskopie auf einem Dauerspeicher (Festplatte, USB-Stick oder CD) vorsehen. Auch ist die Menge der Downloads auf maximal 5 begrenzt.