Beschreibung
Esta obra presenta una colección de demostraciones notables en matemáticas elementales, sobre números, geometría, desigualdades, funciones, origami, teselaciones, de una elegancia excepcional, sucintas e ingeniosas. A través de razonamientos sorprendentes o de potentes representaciones visuales, esperamos que esta selección de demostraciones invite a los lectores a disfrutar de la belleza de las matemáticas.Además, cada capítulo concluye con desafíos al lector se plantean alrededor de ciento treinta, a quien animamos a que busque por sí mismo demostraciones con encanto y a compartir sus descubrimientos con otros.
Inhalt
Prólogo....................................................................11Introducción........................................................... 15Capítulo 1. Un jardín de enteros.................................................................... 211.1. Números figurados.................................................................211.2. Sumas de cuadrados, cubos y números triangulares............................................................ 261.3. Hay infinitos primos.................................................................... 291.4. Números de Fibonacci................................................................ 321.5. El teorema de Fermat.................................................................... 351.6. El teorema de Wilson.................................................................... 351.7. Números perfectos................................................................. 361.8. Desafíos................................................................. 37Capítulo 2. Números ilustres.................................................................... 392.1. La irracionalidad de 2............................................................................. 402.2. La irracionalidad de k cuando k no es un cuadrado perfecto.................................................. 412.3. La razón áurea...................................................................... 422.4. La circunferencia y p............................................................................. 452.5. La irracionalidad de p............................................................................. 472.6. El conde de Buffon y su aguja...................................................................... 482.7. El número e como límite..................................................................... 492.8. Una serie infinita para e............................................................................ 522.9. La irracionalidad de e............................................................................ 522.10. El problema de Steiner sobre el número e............................................................................ 532.11. La constante de Euler-Mascheroni........................................................... 532.12. Exponentes racionales e irracionales........................................................... 552.13. Desafíos................................................................ 56Capítulo 3. Puntos en el plano..................................................................... 593.1. La fórmula de Pick....................................................................... 593.2. Circunferencias y sumas de dos cuadrados.............................................................. 613.3. El teorema de Sylvester-Gallai.................................................................... 633.4. Partiendo en dos un conjunto de cien mil puntos................................................................... 643.5. Palomas y palomares............................................................. 653.6. Asignando números a los puntos del plano..................................................................... 663.7. Desafíos......................................................... 68Capítulo 4. El patio de recreo de los polígonos.............................................................. 694.1. Combinatoria poligonal............................................................... 694. 2. Dibujar un polígono conocidas las longitudes de sus lados................................................................ 724.3. Los teoremas de Maekawa y Kawasaki............................................................... 734.4. Cuadratura de polígonos............................................................... 754.5. Las estrellas del patio de los polígonos............................................................... 764.6.
Informationen zu E-Books
„E-Book“ steht für digitales Buch. Um diese Art von Büchern lesen zu können wird entweder eine spezielle Software für Computer, Tablets und Smartphones oder ein E-Book Reader benötigt. Da viele verschiedene Formate (Dateien) für E-Books existieren, gilt es dabei, einiges zu beachten.
Von uns werden digitale Bücher in drei Formaten ausgeliefert. Die Formate sind EPUB mit DRM (Digital Rights Management), EPUB ohne DRM und PDF. Bei den Formaten PDF und EPUB ohne DRM müssen Sie lediglich prüfen, ob Ihr E-Book Reader kompatibel ist. Wenn ein Format mit DRM genutzt wird, besteht zusätzlich die Notwendigkeit, dass Sie einen kostenlosen Adobe® Digital Editions Account besitzen. Wenn Sie ein E-Book, das Adobe® Digital Editions benötigt herunterladen, erhalten Sie eine ASCM-Datei, die zu Digital Editions hinzugefügt und mit Ihrem Account verknüpft werden muss. Einige E-Book Reader (zum Beispiel PocketBook Touch) unterstützen auch das direkte Eingeben der Login-Daten des Adobe Accounts – somit können diese ASCM-Dateien direkt auf das betreffende Gerät kopiert werden.
Da E-Books nur für eine begrenzte Zeit – in der Regel 6 Monate – herunterladbar sind, sollten Sie stets eine Sicherheitskopie auf einem Dauerspeicher (Festplatte, USB-Stick oder CD) vorsehen. Auch ist die Menge der Downloads auf maximal 5 begrenzt.